LRP5

Gene Summary

Gene:LRP5; LDL receptor related protein 5
Aliases: HBM, LR3, OPS, EVR1, EVR4, LRP7, OPPG, BMND1, LRP-5, LRP-7, OPTA1, PCLD4, VBCH2
Location:11q13.2
Summary:This gene encodes a transmembrane low-density lipoprotein receptor that binds and internalizes ligands in the process of receptor-mediated endocytosis. This protein also acts as a co-receptor with Frizzled protein family members for transducing signals by Wnt proteins and was originally cloned on the basis of its association with type 1 diabetes mellitus in humans. This protein plays a key role in skeletal homeostasis and many bone density related diseases are caused by mutations in this gene. Mutations in this gene also cause familial exudative vitreoretinopathy. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2014]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:low-density lipoprotein receptor-related protein 5
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (39)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • RTPCR
  • Gene Expression Profiling
  • Adolescents
  • Cell Proliferation
  • LDL-Receptor Related Proteins
  • Chromosome 11
  • Frizzled Receptors
  • Multiple Abnormalities
  • Membrane Proteins
  • Vitreous Body
  • Receptors, LDL
  • Cysts
  • Breast Cancer
  • Neoplasm Invasiveness
  • Single Nucleotide Polymorphism
  • Brain Stem Glioma, Childhood
  • Intercellular Signaling Peptides and Proteins
  • Brain and CNS Tumours
  • Bone Cancer
  • Childhood Cancer
  • Neoplasm Metastasis
  • Low Density Lipoprotein Receptor-Related Protein-6
  • Signal Transduction
  • Messenger RNA
  • Biomarkers, Tumor
  • Wnt Proteins
  • Osteoporosis
  • Trisomy
  • cdc25 Phosphatases
  • Disease Progression
  • Eye Abnormalities
  • Transfection
  • Reproducibility of Results
  • Liver Diseases
  • Mutation
  • Cancer Gene Expression Regulation
  • Low Density Lipoprotein Receptor-Related Protein-5
  • Intracellular Signaling Peptides and Proteins
  • Cell Movement
  • Wnt-5a Protein
  • Pedigree
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: LRP5 (cancer-related)

Götzel K, Chemnitzer O, Maurer L, et al.
In-depth characterization of the Wnt-signaling/β-catenin pathway in an in vitro model of Barrett's sequence.
BMC Gastroenterol. 2019; 19(1):38 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: An altered Wnt-signaling activation has been reported during Barrett's esophagus progression, but with rarely detected mutations in APC and β-catenin (CTNNB1) genes.
METHODS: In this study, a robust in-depth expression pattern analysis of frizzled receptors, co-receptors, the Wnt-ligands Wnt3a and Wnt5a, the Wnt-signaling downstream targets Axin2, and CyclinD1, as well as the activation of the intracellular signaling kinases Akt and GSK3β was performed in an in vitro cell culture model of Barrett's esophagus. Representing the Barrett's sequence, we used normal esophageal squamous epithelium (EPC-1, EPC-2), metaplasia (CP-A) and dysplasia (CP-B) to esophageal adenocarcinoma (EAC) cell lines (OE33, OE19) and primary specimens of squamous epithelium, metaplasia and EAC.
RESULTS: A loss of Wnt3a expression was observed beginning from the metaplastic cell line CP-A towards dysplasia (CP-B) and EAC (OE33 and OE19), confirmed by a lower staining index of WNT3A in Barrett's metaplasia and EAC, than in squamous epithelium specimens. Frizzled 1-10 expression analysis revealed a distinct expression pattern, showing the highest expression for Fzd2, Fzd3, Fzd4, Fzd5, Fzd7, and the co-receptor LRP5/6 in EAC cells, while Fzd3 and Fzd7 were rarely expressed in primary specimens from squamous epithelium.
CONCLUSION: Despite the absence of an in-depth characterization of Wnt-signaling-associated receptors in Barrett's esophagus, by showing variations of the Fzd- and co-receptor profiles, we provide evidence to have a significant role during Barrett's progression and the underlying pathological mechanisms.

Abbaszade Dibavar M, Soleimani M, Atashi A, et al.
The effect of simultaneous administration of arsenic trioxide and microvesicles derived from human bone marrow mesenchymal stem cells on cell proliferation and apoptosis of acute myeloid leukemia cell line.
Artif Cells Nanomed Biotechnol. 2018; 46(sup3):S138-S146 [PubMed] Related Publications
Acute Promyelocytic Leukemia is one of the most prevalent forms of leukemia which has been treated with arsenic trioxide (ATO) and/or all-trans retinoic acid (ATRA). Although, ATRA and ATO are broadly accessible and administrated, some adverse side effects have been reported recently. Nowadays, microvesicles (MVs) are considered as a potential therapeutic agent. Their capacity to alter the behavior of the cells is one of the most controversial issues. In this study, we investigated apoptotic effects of MVs derived from human bone marrow mesenchymal stem cells (hBM-MSCs) in combination with ATO on NB4 cell line. MVs were isolated by ultra-centrifugation. After 7 days, MTT assay, Annexin-V-fluorescein staining assay and RT-qPCR for BCL-2, KI67, BAX genes expression were performed. The results showed lower cell viability rate, higher apoptosis ratio, higher BAX gene, and lower KI67 and BCL-2 genes' expression in cells exposed to MVs in combination with ATO compared to cells treated with each agent alone and non-treated control. We showed that MVs in combination with ATO had more apoptotic effect on NB4 cell line than each agent alone. MVs in combination with ATO in APL treatment might play an effective therapeutic role with fewer adverse side effects compared to any other agents.

Wang H, Deng G, Ai M, et al.
Hsp90ab1 stabilizes LRP5 to promote epithelial-mesenchymal transition via activating of AKT and Wnt/β-catenin signaling pathways in gastric cancer progression.
Oncogene. 2019; 38(9):1489-1507 [PubMed] Free Access to Full Article Related Publications
Hsp90ab1 is upregulated in numerous solid tumors, which is thought to induce the angiogenesis and promote cancer metastasis. However, it's actions in gastric cancer (GC) has not been exhibited. In this study, Hsp90ab1 was demonstrated to be overexpressed and correlated with the poor prognosis, proliferation and invasion of GC. Ectopic expression of Hsp90ab1 promoted the proliferation and metastasis of GC cells both in vitro in cell line models of GC and in vivo using two different xenograft mouse models, while opposite effects were observed in Hsp90ab1 silenced cells. Moreover, the underlining molecular mechanism was explored by the co-immunoprecipitation, immunofluorescence, GST pull-down and in vitro ubiquitination assay. Namely, Hsp90ab1 exerted these functions via the interaction of LRP5 and inhibited ubiquitin-mediated degradation of LRP5, an indispensable coreceptor of the Wnt/β-catenin signaling pathway. In addition, the crosstalk between Hsp90ab1 and LRP5 contributed to the upregulation of multiple mesenchymal markers, which are also targets of Wnt/β-catenin. Collectively, this study uncovers the details of the Hsp90ab1-LRP5 axis, providing novel insights into the role and mechanism of invasion and metastasis in GC.

Xiao Q, Wu J, Wang WJ, et al.
DKK2 imparts tumor immunity evasion through β-catenin-independent suppression of cytotoxic immune-cell activation.
Nat Med. 2018; 24(3):262-270 [PubMed] Free Access to Full Article Related Publications
Immunotherapy offers new options for cancer treatment, but efficacy varies across cancer types. Colorectal cancers (CRCs) are largely refractory to immune-checkpoint blockade, which suggests the presence of yet uncharacterized immune-suppressive mechanisms. Here we report that the loss of adenomatosis polyposis coli (APC) in intestinal tumor cells or of the tumor suppressor PTEN in melanoma cells upregulates the expression of Dickkopf-related protein 2 (DKK2), which, together with its receptor LRP5, provides an unconventional mechanism for tumor immune evasion. DKK2 secreted by tumor cells acts on cytotoxic lymphocytes, inhibiting STAT5 signaling by impeding STAT5 nuclear localization via LRP5, but independently of LRP6 and the Wnt-β-catenin pathway. Genetic or antibody-mediated ablation of DKK2 activates natural killer (NK) cells and CD8

Besse W, Choi J, Ahram D, et al.
A noncoding variant in GANAB explains isolated polycystic liver disease (PCLD) in a large family.
Hum Mutat. 2018; 39(3):378-382 [PubMed] Free Access to Full Article Related Publications
Expanded mutation detection and novel gene discovery for isolated polycystic liver disease (PCLD) are necessary as 50% of cases do not have identified mutations in the seven published disease genes. We investigated a family with five affected siblings for which no loss-of-function variants were identified by whole exome sequencing analysis. SNP genotyping and linkage analysis narrowed the candidate regions to ∼8% of the genome, which included two published PCLD genes in close proximity to each other, GANAB and LRP5. Based on these findings, we re-evaluated the exome sequencing data and identified a novel intronic nine base pair deletion in the vicinity of the GANAB exon 24 splice donor that had initially been discarded by the sequence analysis pipelines. We used a minigene assay to show that this deletion leads to skipping of exon 24 in cell lines and primary human cholangiocytes. These findings prompt genomic evaluation beyond the coding region to enhance mutation detection in PCLD and to avoid premature implication of other genes in linkage disequilibrium.

Zhao SJ, Jiang YQ, Xu NW, et al.
SPARCL1 suppresses osteosarcoma metastasis and recruits macrophages by activation of canonical WNT/β-catenin signaling through stabilization of the WNT-receptor complex.
Oncogene. 2018; 37(8):1049-1061 [PubMed] Free Access to Full Article Related Publications
Metastasis significantly reduces the survival rate of osteosarcoma (OS) patients. Therefore, identification of novel targets remains extremely important to prevent metastasis and treat OS. In this report, we show that SPARCL1 is downregulated in OS by epigenetic methylation of promoter DNA. In vitro and in vivo experiments revealed that SPARCL1 inhibits OS metastasis. We further demonstrated that SPARCL1-activated WNT/β-catenin signaling by physical interaction with various frizzled receptors and lipoprotein receptor-related protein 5/6, leading to WNT-receptor complex stabilization. Activation of WNT/β-catenin signaling contributes to the SPARCL1-mediated inhibitory effects on OS metastasis. Furthermore, we uncovered a paracrine effect of SPARCL1 on macrophage recruitment through activated WNT/β-catenin signaling-mediated secretion of chemokine ligand5 from OS cells. These findings suggest that the targeting of SPARCL1 as a new anti-metastatic strategy for OS patients.

Cornec-Le Gall E, Torres VE, Harris PC
Genetic Complexity of Autosomal Dominant Polycystic Kidney and Liver Diseases.
J Am Soc Nephrol. 2018; 29(1):13-23 [PubMed] Free Access to Full Article Related Publications
Data indicate significant phenotypic and genotypic overlap, plus a common pathogenesis, between two groups of inherited disorders, autosomal dominant polycystic kidney diseases (ADPKD), a significant cause of ESRD, and autosomal dominant polycystic liver diseases (ADPLD), which result in significant PLD with minimal PKD. Eight genes have been associated with ADPKD (

Wills ES, Te Morsche RHM, van Reeuwijk J, et al.
Liver cyst gene knockout in cholangiocytes inhibits cilium formation and Wnt signaling.
Hum Mol Genet. 2017; 26(21):4190-4202 [PubMed] Related Publications
Mutations in the PRKCSH, SEC63 and LRP5 genes cause autosomal dominant polycystic liver disease (ADPLD). The proteins products of PRKCSH (alias GIIB) and SEC63 function in protein quality control and processing in the endoplasmic reticulum (ER), while LRP5 is implicated in Wnt/β-catenin signaling. To identify common denominators in the PLD pathogenesis, we mapped the PLD interactome by affinity proteomics, employing both HEK293T cells and H69 cholangiocytes. Identification of known complex members, such as glucosidase IIA (GIIA) for PRKCSH, and SEC61A1 and SEC61B for SEC63, confirmed the specificity of the analysis. GANAB, encoding GIIA, was very recently identified as an ADPLD gene. The presence of GIIA in the LRP5 complex pinpoints a potential functional connection with PRKCSH. Interestingly, all three PLD-associated protein complexes included filamin A (FLNA), a multifunctional protein described to play a role in ciliogenesis as well as canonical Wnt signalling. As ciliary dysfunction may also contribute to hereditary liver cyst formation, we evaluated the requirement of PRKCSH and SEC63 for ciliogenesis and Wnt signaling. By CRISPR/Cas9 induced knockdown of both ADPLD genes in HEK293T cells and H69 cholangiocytes, we identified that their depletion results in defective ciliogenesis. However, only H69 knockouts displayed reduced Wnt3a activation. Our results suggest that loss of PRKCSH and SEC63 leads to general defects in ciliogenesis, while quenching of the Wnt signaling cascade is cholangiocyte-restricted. Interactions of all three PLD-associated protein complexes with FLNA may mark a common link between the ADPLD proteins and the cystogenic processes driving this disease.

van de Laarschot LFM, Drenth JPH
Genetics and mechanisms of hepatic cystogenesis.
Biochim Biophys Acta Mol Basis Dis. 2018; 1864(4 Pt B):1491-1497 [PubMed] Related Publications
Polycystic liver disease (PLD) is a heterogeneous genetic condition. PKD1 and PKD2 germline mutations are found in patients with autosomal dominant polycystic kidney disease (ADPKD). Autosomal dominant polycystic liver disease (ADPLD) is associated with germline mutations in PRKCSH, SEC63, LRP5, and recently ALG8 and SEC61. GANAB mutations are found in both patient groups. Loss of heterozygosity of PLD-genes in cyst epithelium contributes to the development of hepatic cysts. A genetic interaction network is implied in hepatic cystogenesis that connects the endoplasmic glycoprotein control mechanisms and polycystin expression and localization. Wnt signalling could be the major downstream signalling pathway that results in hepatic cyst growth. PLD in ADPLD and ADPKD probably results from changes in one common final pathway that initiates cyst growth. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.

Lyou Y, Habowski AN, Chen GT, Waterman ML
Inhibition of nuclear Wnt signalling: challenges of an elusive target for cancer therapy.
Br J Pharmacol. 2017; 174(24):4589-4599 [PubMed] Free Access to Full Article Related Publications
The highly conserved Wnt signalling pathway plays an important role in embryonic development and disease pathogenesis, most notably cancer. The 'canonical' or β-catenin-dependent Wnt signal initiates at the cell plasma membrane with the binding of Wnt proteins to Frizzled:LRP5/LRP6 receptor complexes and is mediated by the translocation of the transcription co-activator protein, β-catenin, into the nucleus. β-Catenin then forms a complex with T-cell factor (TCF)/lymphoid enhancer binding factor (LEF) transcription factors to regulate multiple gene programmes. These programmes play roles in cell proliferation, migration, vasculogenesis, survival and metabolism. Mutations in Wnt signalling pathway components lead to constitutively active Wnt signalling that drives aberrant expression of these programmes and development of cancer. It has been a longstanding and challenging goal to develop therapies that can interfere with the TCF/LEF-β-catenin transcriptional complex. This review will focus on the (i) structural considerations for targeting the TCF/LEF-β-catenin and co-regulatory complexes in the nucleus, (ii) current molecules that directly target TCF/LEF-β-catenin activity and (iii) ideas for targeting newly discovered components of the TCF/LEF-β-catenin complex and/or downstream gene programmes regulated by these complexes.
LINKED ARTICLES: This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.

Duan X, Yang Y, Wang S, et al.
Changes in the expression of genes involved in cell cycle regulation and the relative telomere length in the process of canceration induced by omethoate.
Tumour Biol. 2017; 39(7):1010428317719782 [PubMed] Related Publications
Organophosphorous pesticides (OPs), with high efficiency, broad-spectrum and low residue, are widely used in China. Omethoate is a broad category of organophosphorous pesticides and is more domestically utilized which has chronic toxic effect on human health caused by long-term, low-dose exposure to Ops, recently its potential genotoxicity has attracted wide attention which can cause chromosomal DNA damage. Thus, the aim of this study is screen susceptible biomarkers and explore the mechanism of canceration induced by omethoate. 180 long-term organophosphorus pesticide-exposed workers and 115 healthy controls were recruited. Quantitative polymerase chain reaction method was applied to determine the relative telomere length in peripheral lymphocyte DNA as well as p53 and p21 gene expression levels. Genetic polymorphisms were determined by the polymerase chain reaction-restriction fragment length polymorphism method. Multiple linear regression was conducted to explore the effects of exposure, expression levels, and polymorphisms in genes on the telomere length. The results showed the relative telomere lengths in the exposure group were significantly longer than that in the control group. The messenger RNA expression levels of p53 and p21 in exposure group were significantly lower than that in the control group; telomere lengths of the CA genotype individuals of p21 rs1801270 polymorphism locus were significantly longer than that of the CC genotype in the control group that were estimated using the Bonferroni method; and bivariate correlation analysis showed that the messenger RNA expression level of gene p53 was negatively correlated with telomere length, and the messenger RNA expression level of gene p21 was positively correlated with telomere length. Multivariate analysis found that p53 messenger RNA and p21 messenger RNA had an impact on telomere length. These results demonstrated that the messenger RNA expression levels of p53 and p21 may have a relationship with the changes in telomere length induced by omethoate and provided strong evidence for the mechanism of canceration induced by poison.

Zhang ZC, Liu JX, Shao ZW, et al.
In vitro effect of microRNA-107 targeting Dkk-1 by regulation of Wnt/β-catenin signaling pathway in osteosarcoma.
Medicine (Baltimore). 2017; 96(27):e7245 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The aim of the study was to explore the effects of microRNA-107 (miR-107) by targeting Dkk-1 on osteosarcoma (OS) via the Wnt/β-catenin signaling pathway.
METHODS: OS and adjacent tissues were collected from 67 patients diagnosed with OS. Expressions of miR-107, Dkk-1, LRP5, β-catenin, and c-Myc were detected by the quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The dual-luciferase reporter gene assay was performed to observe the relationship between miR-107 and Dkk-1.Transfected cells were divided into different investigating groups designated as Inhibitor, Mimic, siRNA, Inhibitor + siRNA, negative control (NC), and blank groups. qRT-PCR and Western blotting were used to detect expressions of miR-107, Dkk-1, β-catenin, Bcl-2, c-Myc, Caspase-3, and PARP. Cell counting kit-8 (CCK-8), flow cytometry (FCM), colony-formation efficiency (CFE), and subcutaneous tumorigenicity assays were all utilized for to determine cell proliferation, apoptosis, colony-forming, and tumorigenic abilities.
RESULTS: Dkk-1 is the target gene of miR-107. Decreased expressions of miR-107, LRP5, β-catenin, and c-Myc, and increased expressions of Dkk-1 were found in OS tissues. The Mimic and siRNA groups exhibited decreased proliferation rates, colony-forming abilities, and tumorigenicity and increased apoptosis rates, whereas the inhibitor group showed opposite trends when compared to the blank group. On the other hand, expressions of miR-107, LRP5, β-catenin, c-Myc, Caspase-3, and PARP were all elevated in the mimic group, whereas expressions of Dkk-1 and Bcl-2 were reduced; opposite trends were observed in the inhibitor group.
CONCLUSION: We conclude that miR-107 is likely to inhibit the occurrence and development of OS by down-regulating Dkk-1 via the Wnt/β-catenin signaling pathway, providing us with a new therapeutic target for the treatment of OS.

Lin CM, Chen HH, Lin CA, et al.
Apigenin-induced lysosomal degradation of β-catenin in Wnt/β-catenin signaling.
Sci Rep. 2017; 7(1):372 [PubMed] Free Access to Full Article Related Publications
The bioflavonoid apigenin has been shown to possess cancer-preventive and anti-cancer activities. In a drug screening, we found that apigenin can inhibit Wnt/β-catenin signaling, a pathway that participates in pivotal biological functions, which dis-regulation results in various human diseases including cancers. However, the underlying mechanism of apigenin in this pathway and its link to anti-cancer activities remain largely unknown. Here we showed that apigenin reduced the amount of total, cytoplasmic, and nuclear β-catenin, leading to the suppression in the β-catenin/TCF-mediated transcriptional activity, the expression of Wnt target genes, and cell proliferation of Wnt-stimulated P19 cells and Wnt-driven colorectal cancer cells. Western blotting and immunofluorescent staining analyses further revealed that apigenin could induce autophagy-mediated down-regulation of β-catenin in treated cells. Treatment with autophagy inhibitors wortmannin and chloroquine compromised this effect, substantiating the involvement of autophagy-lysosomal system on the degradation of β-catenin during Wnt signaling through inhibition of the AKT/mTOR signaling pathway. Our data not only pointed out a route for the inhibition of canonical Wnt signaling through the induction of autophagy-lysosomal degradation of key player β-catenin, but also suggested that apigenin or other treatments which can initiate this degradation event are potentially used for the therapy of Wnt-related diseases including cancers.

Libouban H, Chappard D
Altered bone microarchitecture and gene expression profile due to calcium deficiency in a mouse model of myeloma.
Micron. 2017; 96:77-85 [PubMed] Related Publications
It is not clear why patients with an indolent form of multiple myeloma (MM) develop into an aggressive form with poor prognostic. We investigated the effect of a dietary calcium deficiency on tumor growth, osteolysis and gene expression in the 5T2MM murine model. Two groups of C57BL/KaLwRij mice received 5T2MM cells and started a diet with normal (0.8%; "normal-Ca-MM") or low calcium content (0.05%; "low-Ca-MM"). Two control groups (without 5T2MM cells) received either a normal or low calcium diet (normal-Ca and low-Ca groups). Tumor growth, osteolysis and marrow gene expression of the Wnt pathway, RANKL and MIP-1α were monitored at 6, 8 and 10 weeks (w) after cell injection. In low-Ca mice, serum level of PTH was higher after 10w; microCT showed trabecular bone loss and decrease of cortical thickness at the tibia. A higher M-protein level was evidenced at 10w and 4 mice developed paraplegia at 8/9w in low-Ca-MM group only. Numerous cortical perforations of the tibia were observed in MM groups with a marked decrease in cortical thickness in low-Ca-MM. At 6w, osteoclast number from the endosteum was significantly higher in low-Ca-MM compared to normal-Ca MM. This observation was not found at 8 and 10w. MicroCT of the lumbar vertebrae showed dramatic bone destruction in the low-Ca-MM group. qPCR revealed no difference in RANKL expression whereas differences were obtained in the expression of Lrp5/Lrp6 and MIP-1α from 6w. A low calcium diet induced higher bone destruction in the tibia and vertebra associated with an earlier decrease in bone formation level and a higher increase in bone resorption level at early time in the MM development.

Firtina S, Hatirnaz Ng Ö, Erbilgin Y, et al.
Dysregulation of the DKK1 gene in pediatric B-cell acute lymphoblastic leukemia.
Turk J Med Sci. 2017; 47(1):357-363 [PubMed] Related Publications
BACKGROUND/AIM: The canonical Wingless-type (WNT) pathway is involved in normal hematopoietic cell development and deregulated WNT signaling is implicated in the development of hematological malignancies. Dickkopf 1 (DKK1) acts as a modulator of the β-catenin regulated canonical pathway. Activation of DKK1 leads to apoptosis and growth suppression, whereas silencing by promoter hypermethylation results in abnormal WNT activation. The secreted inhibitor Dickkopf can antagonize WNT signaling by competitively binding to low density lipoprotein receptors (LRPs) 5 and 6.
MATERIALS AND METHODS: We studied DKK1 gene promoter methylation and investigated DKK1, β-catenin, LRP5, and LRP6 mRNA levels in B-cell acute lymphoblastic leukemia (B-ALL) patients (n = 90). Methylation-specific PCR and bisulfite sequencing were used for methylation profiling and quantitative real-time PCR was used for mRNA detection.
RESULTS: The DKK1 gene was examined for its promoter methylation and only 33% of patients were found methylated. On the other hand, B-ALL cases showed high expression of DKK1 (P = 0.01), LRP5 (P = 0.04), and LRP6 (P = 0.02) compared to normal bone marrow cells.
CONCLUSION: DKK1 methylation exists in some of cases but is not sufficient for WNT pathway activation alone in pediatric B-ALL.

Ayinde O, Wang Z, Griffin M
Tissue transglutaminase induces Epithelial-Mesenchymal-Transition and the acquisition of stem cell like characteristics in colorectal cancer cells.
Oncotarget. 2017; 8(12):20025-20041 [PubMed] Free Access to Full Article Related Publications
Human colon cancer cell lines (CRCs) RKO, SW480 and SW620 were investigated for TG2 involvement in tumour advancement and aggression. TG2 expression correlated with tumour advancement and expression of markers of epithelial-mesenchymal transition (EMT). The metastatic cell line SW620 showed high TG2 expression compared to the primary tumour cell lines SW480 and RKO and could form tumour spheroids under non- adherent conditions. TG2 manipulation in the CRCs by shRNA or TG2 transduction confirmed the relationship between TG2 and EMT. TGFβ1 expression in CRC cells, and its level in the cell medium and extracellular matrix was increased in primary tumour CRCs overexpressing TG2 and could regulate TG2 expression and EMT by both canonical (RKO) and non-canonical (RKO and SW480) signalling. TGFβ1 regulation was not observed in the metastatic SW620 cell line, but TG2 knockdown or inhibition in SW620 reversed EMT. In SW620, TG2 expression and EMT was associated with increased presence of nuclear β-catenin which could be mediated by association of TG2 with the Wnt signalling co-receptor LRP5. TG2 inhibition/knockdown increased interaction between β-catenin and ubiquitin shown by co-immunoprecipitation, suggesting that TG2 could be important in β-catenin regulation. β-Catenin and TG2 was also upregulated in SW620 spheroid cells enriched with cancer stem cell marker CD44 and TG2 inhibition/knockdown reduced the spheroid forming potential of SW620 cells. Our data suggests that TG2 could hold both prognostic and therapeutic significance in colon cancer.

Lai KKY, Kweon SM, Chi F, et al.
Stearoyl-CoA Desaturase Promotes Liver Fibrosis and Tumor Development in Mice via a Wnt Positive-Signaling Loop by Stabilization of Low-Density Lipoprotein-Receptor-Related Proteins 5 and 6.
Gastroenterology. 2017; 152(6):1477-1491 [PubMed] Free Access to Full Article Related Publications
BACKGROUND & AIMS: Stearoyl-CoA desaturase (SCD) synthesizes monounsaturated fatty acids (MUFAs) and has been associated with the development of metabolic syndrome, tumorigenesis, and stem cell characteristics. We investigated whether and how SCD promotes liver fibrosis and tumor development in mice.
METHODS: Rodent primary hepatic stellate cells (HSCs), mouse liver tumor-initiating stem cell-like cells (TICs), and human hepatocellular carcinoma (HCC) cell lines were exposed to Wnt signaling inhibitors and changes in gene expression patterns were analyzed. We assessed the functions of SCD by pharmacologic and conditional genetic manipulation in mice with hepatotoxic or cholestatic induction of liver fibrosis, orthotopic transplants of TICs, or liver tumors induced by administration of diethyl nitrosamine. We performed bioinformatic analyses of SCD expression in HCC vs nontumor liver samples collected from patients, and correlated levels with HCC stage and patient mortality. We performed nano-bead pull-down assays, liquid chromatography-mass spectrometry, computational modeling, and ribonucleoprotein immunoprecipitation analyses to identify MUFA-interacting proteins. We examined the effects of SCD inhibition on Wnt signaling, including the expression and stability of low-density lipoprotein-receptor-related proteins 5 and 6 (LRP5 and LRP6), by immunoblot and quantitative polymerase chain reaction analyses.
RESULTS: SCD was overexpressed in activated HSC and HCC cells from patients; levels of SCD messenger RNA (mRNA) correlated with HCC stage and patient survival time. In rodent HSCs and TICs, the Wnt effector β-catenin increased sterol regulatory element binding protein 1-dependent transcription of Scd, and β-catenin in return was stabilized by MUFAs generated by SCD. This loop required MUFA inhibition of binding of Ras-related nuclear protein 1 (Ran1) to transportin 1 and reduced nuclear import of elav-like protein 1 (HuR), increasing cytosolic levels of HuR and HuR-mediated stabilization of mRNAs encoding LRP5 and LRP6. Genetic disruption of Scd and pharmacologic inhibitors of SCD reduced HSC activation and TIC self-renewal and attenuated liver fibrosis and tumorigenesis in mice. Conditional disruption of Scd2 in activated HSCs prevented growth of tumors from TICs and reduced the formation of diethyl nitrosamine-induced liver tumors in mice.
CONCLUSIONS: In rodent HSCs and TICs, we found SCD expression to be regulated by Wnt-β-catenin signaling, and MUFAs produced by SCD provided a forward loop to amplify Wnt signaling via stabilization of Lrp5 and Lrp6 mRNAs, contributing to liver fibrosis and tumor growth. SCD expressed by HSCs promoted liver tumor development in mice. Components of the identified loop linking HSCs and TICs might be therapeutic targets for liver fibrosis and tumors.

den Hoed MA, Pluijm SM, Stolk L, et al.
Genetic variation and bone mineral density in long-term adult survivors of childhood cancer.
Pediatr Blood Cancer. 2016; 63(12):2212-2220 [PubMed] Related Publications
PURPOSE: Despite similarities in upfront treatment of childhood cancer, not every adult survivor of childhood cancer (CCS) has an impaired bone mineral density (BMD). No data are available on the role of genetic variation on impairment of BMD in CCS.
METHODS: This cross-sectional single-center cohort study included 334 adult CCSs (median follow-up time after cessation of treatment: 15 years; median age at follow-up: 26 years). Total body BMD (BMD
RESULTS: Multivariate analyses revealed that lower BMD was associated with lower weight and height at follow-up, male sex, and previously administered radiotherapy. Survivors with the homozygous minor allele (GG) genotype of rs2504063 (ESR1: estrogen receptor type 1) had a lower BMD
CONCLUSION: CCSs who are carriers of candidate SNPs in the ESR1 or LRP5 genes seem to have an impaired bone mass at an early adult age. Information on genetic variation, in addition to patient- and treatment-related factors, may be helpful in identifying survivors who are at risk for low bone density after childhood cancer treatment.

Wills ES, Cnossen WR, Veltman JA, et al.
Chromosomal abnormalities in hepatic cysts point to novel polycystic liver disease genes.
Eur J Hum Genet. 2016; 24(12):1707-1714 [PubMed] Free Access to Full Article Related Publications
Autosomal dominant polycystic liver disease (ADPLD) is caused by variants in PRKCSH, SEC63, and LRP5, whereas autosomal dominant polycystic kidney disease is caused by variants in PKD1 and PKD2. Liver cyst development in these disorders is explained by somatic loss-of-heterozygosity (LOH) of the wild-type allele in the developing cyst. We hypothesize that we can use this mechanism to identify novel disease genes that reside in LOH regions. In this study, we aim to map abnormal genomic regions using high-density SNP microarrays to find novel PLD genes. We collected 46 cysts from 23 patients with polycystic or sporadic hepatic cysts, and analyzed DNA from those cysts using high-resolution microarray (n=24) or Sanger sequencing (n=22). We here focused on regions of homozygosity on the autosomes (>3.0 Mb) and large CNVs (>1.0 Mb). We found frequent LOH in PRKCSH (22/29) and PKD1/PKD2 (2/3) cysts of patients with known heterozygous germline variants in the respective genes. In the total cohort, 12/23 patients harbored abnormalities outside of familiar areas. In individual ADPLD cases, we identified germline events: a 2q13 complex rearrangement resulting in BUB1 haploinsufficiency, a 47XXX karyotype, chromosome 9q copy-number loss, and LOH on chromosome 3p. The latter region was overlapping with an LOH region identified in two other cysts. Unique germline and somatic abnormalities occur frequently in and outside of known genes underlying cysts. Each liver cyst has a unique genetic makeup. LOH driver gene BUB1 may imply germline causes of genetic instability in PLD.

Porath B, Gainullin VG, Cornec-Le Gall E, et al.
Mutations in GANAB, Encoding the Glucosidase IIα Subunit, Cause Autosomal-Dominant Polycystic Kidney and Liver Disease.
Am J Hum Genet. 2016; 98(6):1193-1207 [PubMed] Free Access to Full Article Related Publications
Autosomal-dominant polycystic kidney disease (ADPKD) is a common, progressive, adult-onset disease that is an important cause of end-stage renal disease (ESRD), which requires transplantation or dialysis. Mutations in PKD1 or PKD2 (∼85% and ∼15% of resolved cases, respectively) are the known causes of ADPKD. Extrarenal manifestations include an increased level of intracranial aneurysms and polycystic liver disease (PLD), which can be severe and associated with significant morbidity. Autosomal-dominant PLD (ADPLD) with no or very few renal cysts is a separate disorder caused by PRKCSH, SEC63, or LRP5 mutations. After screening, 7%-10% of ADPKD-affected and ∼50% of ADPLD-affected families were genetically unresolved (GUR), suggesting further genetic heterogeneity of both disorders. Whole-exome sequencing of six GUR ADPKD-affected families identified one with a missense mutation in GANAB, encoding glucosidase II subunit α (GIIα). Because PRKCSH encodes GIIβ, GANAB is a strong ADPKD and ADPLD candidate gene. Sanger screening of 321 additional GUR families identified eight further likely mutations (six truncating), and a total of 20 affected individuals were identified in seven ADPKD- and two ADPLD-affected families. The phenotype was mild PKD and variable, including severe, PLD. Analysis of GANAB-null cells showed an absolute requirement of GIIα for maturation and surface and ciliary localization of the ADPKD proteins (PC1 and PC2), and reduced mature PC1 was seen in GANAB(+/-) cells. PC1 surface localization in GANAB(-/-) cells was rescued by wild-type, but not mutant, GIIα. Overall, we show that GANAB mutations cause ADPKD and ADPLD and that the cystogenesis is most likely driven by defects in PC1 maturation.

Westin G
Molecular genetics and epigenetics of nonfamilial (sporadic) parathyroid tumours.
J Intern Med. 2016; 280(6):551-558 [PubMed] Related Publications
Primary hyperparathyroidism (pHPT) is a common endocrine disease characterized by excessive secretion of parathyroid hormone and an increased level of serum calcium. Overall, 80-85% of pHPT cases are due to a benign, single parathyroid adenoma (PA), and 15% to multiglandular disease (multiple adenomas/hyperplasia). Parathyroid carcinoma (PC) is rare, accounting for <0.5-1% of pHPT cases. Secondary hyperparathyroidism (sHPT) is a complication of renal failure, with the development of parathyroid tumours and hypercalcaemia. Recurrent mutations in the MEN1 gene have been confirmed by the whole-exome sequencing in 35% of PAs, suggesting that non-protein-coding genes, regulatory elements or epigenetic derangements may also have roles in the majority of PAs. DNA translocations with cyclin D1 overexpression occur in PAs (8%). In PCs, mutations in CDC73/HRPT2 are common. Activation of the WNT/β-catenin signalling pathway (accumulation of nonphosphorylated β-catenin) by an aberrantly truncated LRP5 receptor has been seen for the majority of investigated PAs and sHPT tumours, and possibly by APC inactivation through promoter methylation in PCs. Promoter methylation of several other genes and repressive histone H3 lysine 27 trimethylation by EZH2 of the HIC1 gene may also contribute to parathyroid tumorigenesis. It is possible that a common pathway exists for parathyroid tumour development. CCND1 (cyclin D1) and EZH2 overexpression, accumulation of nonphosphorylated β-catenin and repression of HIC1 have all been observed to occur in PAs, PCs and sHPT tumours. In addition, hypermethylation has been observed for the same genes in PAs and PCs (e.g. SFRP1, CDKN2A and WT1). Whether β-catenin represents a 'hub' in parathyroid tumour development will be discussed.

Takam Kamga P, Bassi G, Cassaro A, et al.
Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia.
Oncotarget. 2016; 7(16):21713-27 [PubMed] Free Access to Full Article Related Publications
Both preclinical and clinical investigations suggest that Notch signalling is critical for the development of many cancers and for their response to chemotherapy. We previously showed that Notch inhibition abrogates stromal-induced chemoresistance in lymphoid neoplasms. However, the role of Notch in acute myeloid leukemia (AML) and its contribution to the crosstalk between leukemia cells and bone marrow stromal cells remain controversial. Thus, we evaluated the role of the Notch pathway in the proliferation, survival and chemoresistance of AML cells in co-culture with bone marrow mesenchymal stromal cells expanded from both healthy donors (hBM-MSCs) and AML patients (hBM-MSCs*). As compared to hBM-MSCs, hBM-MSCs* showed higher level of Notch1, Jagged1 as well as the main Notch target gene HES1. Notably, hBM-MSCs* induced expression and activation of Notch signalling in AML cells, supporting AML proliferation and being more efficientin inducing AML chemoresistance than hBM-MSCs*. Pharmacological inhibition of Notch using combinations of Notch receptor-blocking antibodies or gamma-secretase inhibitors (GSIs), in presence of chemotherapeutic agents, significant lowered the supportive effect of hBM-MSCs and hBM-MSCs* towards AML cells, by activating apoptotic cascade and reducing protein level of STAT3, AKT and NF-κB.These results suggest that Notch signalling inhibition, by overcoming the stromal-mediated promotion of chemoresistance,may represent a potential therapeutic targetnot only for lymphoid neoplasms, but also for AML.

de Voer RM, Hahn MM, Weren RD, et al.
Identification of Novel Candidate Genes for Early-Onset Colorectal Cancer Susceptibility.
PLoS Genet. 2016; 12(2):e1005880 [PubMed] Free Access to Full Article Related Publications
Approximately 25-30% of colorectal cancer (CRC) cases are expected to result from a genetic predisposition, but in only 5-10% of these cases highly penetrant germline mutations are found. The remaining CRC heritability is still unexplained, and may be caused by a hitherto-undefined set of rare variants with a moderately penetrant risk. Here we aimed to identify novel risk factors for early-onset CRC using whole-exome sequencing, which was performed on a cohort of CRC individuals (n = 55) with a disease onset before 45 years of age. We searched for genes that were recurrently affected by rare variants (minor allele frequency ≤ 0.001) with potentially damaging effects and, subsequently, re-sequenced the candidate genes in a replication cohort of 174 early-onset or familial CRC individuals. Two functionally relevant genes with low frequency variants with potentially damaging effects, PTPN12 and LRP6, were found in at least three individuals. The protein tyrosine phosphatase PTP-PEST, encoded by PTPN12, is a regulator of cell motility and LRP6 is a component of the WNT-FZD-LRP5-LRP6 complex that triggers WNT signaling. All variants in LRP6 were identified in individuals with an extremely early-onset of the disease (≤30 years of age), and two of the three variants showed increased WNT signaling activity in vitro. In conclusion, we present PTPN12 and LRP6 as novel candidates contributing to the heterogeneous susceptibility to CRC.

Lv YF, Dai H, Yan GN, et al.
Downregulation of tumor suppressing STF cDNA 3 promotes epithelial-mesenchymal transition and tumor metastasis of osteosarcoma by the Wnt/GSK-3β/β-catenin/Snail signaling pathway.
Cancer Lett. 2016; 373(2):164-73 [PubMed] Related Publications
Epithelial to mesenchymal transition (EMT) has received considerable attention as a conceptual paradigm for explaining the invasive and metastatic behavior of cells during cancer progression. Our previous study showed that loss of expression of TSSC3 is positively associated with osteosarcoma malignancy and progression. However, whether TSSC3 mediates EMT in osteosarcoma is poorly understood. In the present study, we determined that TSSC3 downregulation induced cell migration and invasion ability and promoted mesenchymal transition of osteosarcoma cells by upregulating mesenchymal markers and inhibiting the epithelial markers. Furthermore, TSSC3 downregulation elicited a signaling cascade that included increased levels of Wnt3a and LRP5, inactivation of GSK-3β, accumulation of nuclear β-catenin and Snail, the augmented binding of β-catenin to TCF-4, and accordingly increased the expression of Wnt target genes (CD44, MMP7). The gene knockdown of these signaling proteins could inhibit TSSC3 downregulation-promoted EMT, migration, and invasion in osteosarcoma. Finally, TSSC3 overexpression obviously inhibited cell migration, invasion, and repressed mesenchymal phenotypes, reducing lung metastasis through GSK-3β activation. Collectively, TSSC3 downregulation promotes the EMT of osteosarcoma cells by regulating EMT markers via a signal transduction pathway that involves Snail, Wnt-β-catenin/TCF, and GSK-3β.

Zhou K, Xia M, Tang B, et al.
Isolation and comparison of mesenchymal stem cell‑like cells derived from human gastric cancer tissues and corresponding ovarian metastases.
Mol Med Rep. 2016; 13(2):1788-94 [PubMed] Related Publications
Mesenchymal stem cell (MSC)-like cells have been isolated from various types of tumor. It has previously been reported that MSCs are involved in tumorigenesis and its prognosis. The aim of the present study was to isolate and compare MSC-like cells from human gastric cancer (GC) and its metastatic deposits in ovarian tissue. MSC-like cells were isolated from human gastric cancer (hGC-MSCs) and the corresponding ovarian metastatic tissues (hGCOM-MSCs) from 40 patients. The characteristics of hGC-MSCs and hGCOM-MSCs, including their morphology, surface antigens, specific gene expression and differentiation potential, were similar to those of MSCs derived from human bone marrow (hBM-MSCs) but different from GC cells. In conclusion, the present study demonstrated that MSC-like cells could be isolated from GC tissue and its ovarian metastatic tissues. The existence of MSC-like cells in GC tissues and its ovarian metastatic tissues suggests that they may be a potential target for cancer therapy, and provides an experimental foundation for investigating their role in the initiation and progression of ovarian metastasis of GC.

Jin Y, Liu Y, Zhang J, et al.
The Expression of miR-375 Is Associated with Carcinogenesis in Three Subtypes of Lung Cancer.
PLoS One. 2015; 10(12):e0144187 [PubMed] Free Access to Full Article Related Publications
Many studies demonstrated unique microRNA profiles in lung cancer. Nonetheless, the role and related signal pathways of miR-375 in lung cancer are largely unknown. Our study investigated relationships between carcinogenesis and miR-375 in adenocarcinoma, squamous cell carcinoma and small cell lung carcinoma to identify new molecular targets for treatment. We evaluated 723 microRNAs in microdissected cancerous cells and adjacent normal cells from 126 snap-frozen lung specimens using microarrays. We validated the expression profiles of miR-375 and its 22 putative target mRNAs in an independent cohort of 78 snap-frozen lung cancer tissues using quantitative reverse-transcriptase PCR. Moreover, we performed dual luciferase reporter assay and Western blot on 6 targeted genes (FZD8, ITGA10, ITPKB, LRP5, PIAS1 andRUNX1) in small cell lung carcinoma cell line NCI-H82. We also detected the effect of miR-375 on cell proliferation in NCI-H82. We found that miR-375 expression was significantly up-regulated in adenocarcinoma and small cell lung carcinoma but down-regulated in squamous cell carcinoma. Among the 22 putative target genes, 11 showed significantly different expression levels in at least 2 of 3 pair-wise comparisons (adenocarcinoma vs. normal, squamous cell carcinoma vs. normal or small cell lung carcinoma vs. normal). Six targeted genes had strong negative correlation with the expression level of miR-375 in small cell lung carcinoma. Further investigation revealed that miR-375 directly targeted the 3'UTR of ITPKB mRNA and over-expression of miR-375 led to significantly decreased ITPKB protein level and promoted cell growth. Thus, our study demonstrates the differential expression profiles of miR-375 in 3 subtypes of lung carcinomas and finds thatmiR-375 directly targets ITPKB and promoted cell growth in SCLC cell line.

Thomas LR, Foshage AM, Weissmiller AM, et al.
Interaction of MYC with host cell factor-1 is mediated by the evolutionarily conserved Myc box IV motif.
Oncogene. 2016; 35(27):3613-8 [PubMed] Free Access to Full Article Related Publications
The MYC family of oncogenes encodes a set of three related transcription factors that are overexpressed in many human tumors and contribute to the cancer-related deaths of more than 70,000 Americans every year. MYC proteins drive tumorigenesis by interacting with co-factors that enable them to regulate the expression of thousands of genes linked to cell growth, proliferation, metabolism and genome stability. One effective way to identify critical co-factors required for MYC function has been to focus on sequence motifs within MYC that are conserved throughout evolution, on the assumption that their conservation is driven by protein-protein interactions that are vital for MYC activity. In addition to their DNA-binding domains, MYC proteins carry five regions of high sequence conservation known as Myc boxes (Mb). To date, four of the Mb motifs (MbI, MbII, MbIIIa and MbIIIb) have had a molecular function assigned to them, but the precise role of the remaining Mb, MbIV, and the reason for its preservation in vertebrate Myc proteins, is unknown. Here, we show that MbIV is required for the association of MYC with the abundant transcriptional coregulator host cell factor-1 (HCF-1). We show that the invariant core of MbIV resembles the tetrapeptide HCF-binding motif (HBM) found in many HCF-interaction partners, and demonstrate that MYC interacts with HCF-1 in a manner indistinguishable from the prototypical HBM-containing protein VP16. Finally, we show that rationalized point mutations in MYC that disrupt interaction with HCF-1 attenuate the ability of MYC to drive tumorigenesis in mice. Together, these data expose a molecular function for MbIV and indicate that HCF-1 is an important co-factor for MYC.

White RF, Steele L, O'Callaghan JP, et al.
Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment.
Cortex. 2016; 74:449-75 [PubMed] Free Access to Full Article Related Publications
Veterans of Operation Desert Storm/Desert Shield - the 1991 Gulf War (GW) - are a unique population who returned from theater with multiple health complaints and disorders. Studies in the U.S. and elsewhere have consistently concluded that approximately 25-32% of this population suffers from a disorder characterized by symptoms that vary somewhat among individuals and include fatigue, headaches, cognitive dysfunction, musculoskeletal pain, and respiratory, gastrointestinal and dermatologic complaints. Gulf War illness (GWI) is the term used to describe this disorder. In addition, brain cancer occurs at increased rates in subgroups of GW veterans, as do neuropsychological and brain imaging abnormalities. Chemical exposures have become the focus of etiologic GWI research because nervous system symptoms are prominent and many neurotoxicants were present in theater, including organophosphates (OPs), carbamates, and other pesticides; sarin/cyclosarin nerve agents, and pyridostigmine bromide (PB) medications used as prophylaxis against chemical warfare attacks. Psychiatric etiologies have been ruled out. This paper reviews the recent literature on the health of 1991 GW veterans, focusing particularly on the central nervous system and on effects of toxicant exposures. In addition, it emphasizes research published since 2008, following on an exhaustive review that was published in that year that summarizes the prior literature (RACGWI, 2008). We conclude that exposure to pesticides and/or to PB are causally associated with GWI and the neurological dysfunction in GW veterans. Exposure to sarin and cyclosarin and to oil well fire emissions are also associated with neurologically based health effects, though their contribution to development of the disorder known as GWI is less clear. Gene-environment interactions are likely to have contributed to development of GWI in deployed veterans. The health consequences of chemical exposures in the GW and other conflicts have been called "toxic wounds" by veterans. This type of injury requires further study and concentrated treatment research efforts that may also benefit other occupational groups with similar exposure-related illnesses.

Szwed M, Kania KD, Jozwiak Z
Toxicity of doxorubicin-transferrin conjugate is connected to the modulation of Wnt/β-catenin pathway in human leukemia cells.
Leuk Res. 2015; 39(10):1096-102 [PubMed] Related Publications
Chronic myeloid leukemia (CML) is a disorder of hematopoietic stem cells caused by constitutive activation of the BCR/ABL tyrosine kinase. However, the tyrosine kinase inhibitors like imatinib mesylate are not effective in the patients with advanced-stage of CML. Hence, there is an urgent need for new approaches to overcome a cancer cell's resistance in CML long term therapy. Development of new drug carriers, is presently one of the most challenging tasks in experimental oncology. In this report we investigated whether the toxicity of newly synthetized doxorubicin transferrin conjugate (DOX-TRF) may be connected to the limitation of multidrug resistance in CML cells by the alternations of Wnt/β-catenin signaling pathway. The studies were performed on human chronic myeloid leukemia cell lines sensitive (K562) and resistant (K562/DOX) to doxorubicin. Our research proves that DOX-TRF conjugate displays higher cytotoxicity toward both examined cell lines than the reference free drug (DOX) and induces more extensive pro-apoptotic changes. Moreover, by the of engagement of Wnt pathway agonist (LiCl) and antagonist (ICG 001) we demonstrate that DOX-TRF conjugate effectively reduces transcription of key genes involved in β-catenin signaling transduction trial (Wnt3a, DVL-1, FZD-3, LRP5, β-catenin, DKK2) and triggers morphology alternations of CML cells.

Li SC, Shi H, Khan M, et al.
Roles of miR-196a on gene regulation of neuroendocrine tumor cells.
Mol Cell Endocrinol. 2015; 412:131-9 [PubMed] Related Publications
This study aims at investigating miR-196a roles using in vitro models. miR-196a was detected in small intestinal neuroendocrine tumors (SI-NETs) and lung NETs. miR-196a target prediction analysis suggested HOXA9, HOXB7, LRP4 and RSPO2 genes for further investigation. The level of these four genes is detectable in SI-NET tissue specimens at different disease stages and serum samples of untreated and somatostatin analogs treated patients with liver metastases. A miR-196a inhibitor was used to silence its effects in NET cells. We show that the four target genes were significantly upregulated at transcriptional level in silenced NET cells. HOXA9, HOXB7, LRP4 and RSPO2 encoded proteins are also upregulated at translational level in miR-196a silenced NET cells. miR-196a downstream genes BMP4, ETS1, CTNNB1, FZD5, LRP5 and LRP6 were significantly upregulated at transcriptional level in miR-196a silenced CNDT2.5 and NCI-H727 cells. In addition, miR-196a clearly does not play a role in NET cell growth control.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. LRP5, Cancer Genetics Web: http://www.cancer-genetics.org/LRP5.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999