CCN2

Gene Summary

Gene:CCN2; cellular communication network factor 2
Aliases: CTGF, NOV2, HCS24, IGFBP8
Location:6q23.2
Summary:The protein encoded by this gene is a mitogen that is secreted by vascular endothelial cells. The encoded protein plays a role in chondrocyte proliferation and differentiation, cell adhesion in many cell types, and is related to platelet-derived growth factor. Certain polymorphisms in this gene have been linked with a higher incidence of systemic sclerosis. [provided by RefSeq, Nov 2009]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:CCN family member 2
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (58)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • VHL
  • Staurosporine
  • Repressor Proteins
  • beta Catenin
  • RTPCR
  • Messenger RNA
  • Connective Tissue Growth Factor
  • Severity of Illness Index
  • Single Nucleotide Polymorphism
  • Thrombospondin 1
  • Testicular Cancer
  • Thyroid Cancer
  • siRNA
  • Signal Transduction
  • Cell Proliferation
  • Stem Cells
  • Gene Expression Profiling
  • Proto-Oncogene Proteins
  • Bone Cancer
  • Cancer Gene Expression Regulation
  • Intercellular Signaling Peptides and Proteins
  • Cancer RNA
  • Chromosome 6
  • Vascular Neoplasms
  • Reproducibility of Results
  • Transforming Growth Factor beta
  • Survival Rate
  • Vascular Endothelial Growth Factors
  • Neoplasm Metastasis
  • Triggering Receptor Expressed on Myeloid Cells-1
  • Angiogenesis
  • Breast Cancer
  • Transcriptional Activation
  • Wilms Tumour
  • Tumor Stem Cell Assay
  • Tissue Array Analysis
  • Immediate-Early Proteins
  • Cell Movement
  • Xenograft Models
  • NOV
  • Transcription
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CTGF (cancer-related)

Shao S, Duan W, Xu Q, et al.
Curcumin Suppresses Hepatic Stellate Cell-Induced Hepatocarcinoma Angiogenesis and Invasion through Downregulating CTGF.
Oxid Med Cell Longev. 2019; 2019:8148510 [PubMed] Free Access to Full Article Related Publications
Microenvironment plays a vital role in tumor progression; we focused on elucidating the role of hepatic stellate cells (HSCs) in hepatocarcinoma (HCC) aggressiveness and investigated the potential protective effect of curcumin on HSC-driven hepatocarcinoma angiogenesis and invasion. Our data suggest that HSCs increase HCC reactive oxygen species (ROS) production to upregulate hypoxia-inducible factor-1

Gao H, Yin FF, Guan DX, et al.
Liver cancer: WISP3 suppresses hepatocellular carcinoma progression by negative regulation of β-catenin/TCF/LEF signalling.
Cell Prolif. 2019; 52(3):e12583 [PubMed] Related Publications
OBJECTIVES: Wnt1-inducible signalling pathway protein 3 (WISP3/CCN6) belongs to the CCN (CYR61/CTGF/NOV) family of proteins, dysregulation of this family contributed to the tumorigenicity of various tumours. In this study, we need to explore its role in hepatocellular carcinoma that remains largely elusive.
MATERIALS AND METHODS: The expression of WISP3/CCN6 was analysed by qRT-PCR and Western blotting. Effects of WISP3 on proliferation and metastasis of HCC cells were examined, respectively, by MTT assay and Boyden Chamber. Roles of WISP3 on HCC tumour growth and metastatic ability in vivo were detected in nude mice. Related mechanism study was confirmed by immunofluorescence and Western blotting.
RESULTS: The expression of WISP3 was significantly downregulated in HCC clinical samples and cell lines, and reversely correlated with the tumour size. Forced expression of WISP3 in HCC cells significantly suppressed cell growth and migration in vitro as well as tumour growth and metastatic seeding in vivo. In contrast, downregulation of WISP3 accelerated cell proliferation and migration, and promoted in vivo metastasis. Further study revealed that WISP3 inhibited the translocation of β-catenin to the nucleus by activating glycogen synthase kinase-3β (GSK3β). Moreover, constitutively active β-catenin blocked the suppressive effects of WISP3 on HCC.
CONCLUSIONS: Our study showed that WISP3 suppressed the progression of HCC by negative regulation of β-catenin/TCF/LEF signalling, providing WISP3 as a potential therapeutic candidate for HCC.

Rigiracciolo DC, Santolla MF, Lappano R, et al.
Focal adhesion kinase (FAK) activation by estrogens involves GPER in triple-negative breast cancer cells.
J Exp Clin Cancer Res. 2019; 38(1):58 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Focal adhesion kinase (FAK) is a cytoplasmatic protein tyrosine kinase that associates with both integrins and growth factor receptors toward the adhesion, migration and invasion of cancer cells. The G-protein coupled estrogen receptor (GPER) has been involved in the stimulatory action of estrogens in breast tumor. In this study, we have investigated the engagement of FAK by GPER signaling in triple negative breast cancer (TNBC) cells.
METHODS: Publicly available large-scale database and patient data sets derived from "The Cancer Genome Atlas" (TCGA; www.cbioportal.org ) were used to assess FAK expression in TNBC, non-TNBC tumors and normal breast tissues. MDA-MB 231 and SUM159 TNBC cells were used as model system. The levels of phosphorylated FAK, other transduction mediators and target genes were detected by western blotting analysis. Focal adhesion assay was carried out in order to determine the focal adhesion points and the formation of focal adhesions (FAs). Luciferase assays were performed to evaluate the promoters activity of c-FOS, EGR1 and CTGF upon GPER activation. The mRNA expression of the aforementioned genes was measured by real time-PCR. Boyden chamber and wound healing assays were used in order to evaluate cell migration. The statistical analysis was performed by ANOVA.
RESULTS: We first determined by bioinformatic analysis that the mRNA expression levels of the gene encoding FAK, namely PTK2, is higher in TNBC respect to non-TNBC and normal breast tissues. Next, we found that estrogenic GPER signaling triggers Y397 FAK phosphorylation as well as the increase of focal adhesion points (FAs) in TNBC cells. Besides, we ascertained that GPER and FAK activation are involved in the STAT3 nuclear accumulation and gene expression changes. As biological counterpart, we show that FAK inhibition prevents the migration of TNBC cells upon GPER activation.
CONCLUSIONS: The present data provide novel insights regarding the action of FAK in TNBC. Moreover, on the basis of our findings estrogenic GPER signaling may be considered among the transduction mechanisms engaging FAK toward breast cancer progression.

Gerashchenko GV, Grygoruk OV, Kononenko OA, et al.
Expression pattern of genes associated with tumor microenvironment in prostate cancer.
Exp Oncol. 2018; 40(4):315-322 [PubMed] Related Publications
AIM: To assess relative expression (RE) levels of CAF-, TAM-specific, immune defense-associated genes in prostate tumors and to show correlation of RE with clinical, pathological and molecular characteristics, with the aim to define clinically significant specific alterations in a gene expression pattern.
METHODS: RE of 23 genes was analyzed by a quantitative polymerase chain reaction in 37 freshly frozen samples of prostate cancer tissues of a different Gleason score (GS) and at various tumor stages, compared with RE in 37 paired conventionally normal prostate tissue (CNT) samples and 20 samples of prostate adenomas.
RESULTS: Differences in RE were shown for 11 genes out of 23 studied, when tumor samples were compared with corresponding CNTs. 7 genes, namely ACTA2, CXCL14, CTGF, THY1, FAP, CD163, CCL17 were upregulated in tumors. 4 genes, namely CCR4, NOS2A, MSMB, IL1R1 were downregulated in tumors. 14 genes demonstrated different RE in TNA at different stages: CXCL12, CXCL14, CTGF, FAP, HIF1A, THY1, CCL17, CCL22, CCR4, CD68, CD163, NOS2A, CTLA4, IL1R1. RE changes of 9 genes - CXCL12, CXCL14, HIF1A, CCR4, CCL17, NOS2A, CTLA4, IL1R1, IL2RA - were found in tumors with different GS. Moreover, 9 genes showed differences in RE in TNA, dependently on the presence or absence of the TMPRSS2/ERG fusion and 7 genes showed differences in RE of groups with differential PTEN expression. Significant correlations were calculated between RE of 9 genes in adenocarcinomas and the stage, and GS; also, between RE of 2 genes and the fusion presence; and between RE of 4 genes and PTEN expression.
CONCLUSIONS: Several gene expression patterns were identified that correlated with the GS, stage and molecular characteristics of tumors, i.e. presence of the TMPRSS2/ERG fusion and alterations in PTEN expression. These expression patterns can be used for molecular profiling of prostate tumors, with the aim to develop personalized medicine approaches. However, the proposed profiling requires a more detailed analysis and a larger cohort of patients with prostate tumor.

Hartman ML, Sztiller-Sikorska M, Czyz M
Whole-exome sequencing reveals novel genetic variants associated with diverse phenotypes of melanoma cells.
Mol Carcinog. 2019; 58(4):588-602 [PubMed] Related Publications
We have extensively studied the phenotypic heterogeneity of patient-derived melanoma cells. Here, whole-exome sequencing revealed novel variants of genes associated with the MAPK, NOTCH, Hippo, cell-cycle, senescence, and ubiquitin-dependent pathways, which could contribute to the observed phenotypic diversity between cell lines. Focusing on mutations in the MAPK pathway-associated genes, we found BRAF (BRAF

Hang W, Feng Y, Sang Z, et al.
Downregulation of miR-145-5p in cancer cells and their derived exosomes may contribute to the development of ovarian cancer by targeting CT.
Int J Mol Med. 2019; 43(1):256-266 [PubMed] Free Access to Full Article Related Publications
The present study aimed to identify shared microRNAs (miRNAs) in ovarian cancer (OC) cells and their exosomes using microarray data (accession number GSE103708) available from the Gene Expression Omnibus database, including exosomal samples from 13 OC cell lines and 3 normal ovarian surface epithelial cell lines, and their original cell samples. Differentially expressed miRNAs (DE‑miRNAs) were identified using the Linear Models for Microarray data method, and mRNA targets of DE‑miRNAs were predicted using the miRWalk2 database. The potential functions of target genes were analyzed using Database for Annotation, Visualization and Integrated Discovery and intersected with known OC‑associated pathways downloaded from the Comparative Toxicogenomics Database. The associations between crucial miRNAs and target genes, and their clinical associations, were validated using data from The Cancer Genome Atlas. As a result, 16 upregulated and 6 downregulated DE‑miRNAs were shared in OC cell lines and their exosomes compared with normal controls. The target genes of 11 common DE‑miRNAs were predicted. Among these DE‑miRNAs, a low expression of homo sapiens (hsa)‑miR‑145‑5p was significantly correlated with a poor prognosis and higher stages. Although 91 target genes were predicted for hsa‑miR‑145‑5p, only 4 genes [connective tissue growth factor (CTGF), myotubularin‑related protein 14, protein phosphatase 3 catalytic subunit alpha and suppressor of cytokine signaling 7] were suggested as risk factors for prognosis. The subsequent Pearson's correlation analysis validated a significant negative correlation between hsa‑miR‑145‑5p and CTGF (r=‑0.1126, P=0.02188). According to the results of the functional analysis, CTGF is involved in the Hippo signaling pathway (hsa04390). In conclusion, decreased expression of hsa‑miR‑145 in OC and OC‑derived exosomes may be a crucial biomarker for the diagnosis and treatment of OC.

Wang Q, Shen Y, Ye B, et al.
Gene expression differences between thyroid carcinoma, thyroid adenoma and normal thyroid tissue.
Oncol Rep. 2018; 40(6):3359-3369 [PubMed] Free Access to Full Article Related Publications
To identify differences in gene expression profiles of infected cells between thyroid carcinoma (C), thyroid adenoma (A) and normal thyroid (N) epithelial cells, differentially expressed genes were identified using three pairwise comparisons with the GEO2R online tool. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were used to classify them at the functional level. The most significant cluster in the N vs. A pairwise comparison had four hub genes: Insulin-like growth factor 2, Von Willebrand factor (VWF), multimerin 1 (MMRN1) and complement factor D (CFD). In N vs. C, the most significant cluster had 19 genes: IGF2, early growth response 2, transcription factor 3, KIT proto‑oncogene receptor tyrosine kinase, SMAD family member 9, MLLT3 super elongation complex subunit, runt related transcription factor 1, CFD, actinin α 1, SWI/SNF related matrix associated actin dependent regulator of chromatin subfamily a member 4, JunD proto‑oncogene AP‑1 transcription factor subunit, serum response factor (SRF), FosB proto‑oncogene, AP‑1 transcription factor subunit, connective tissue growth factor (CTGF), SRC proto‑oncogene, non‑receptor tyrosine kinase, MMRN1, SRY‑box 9, early growth response 3 and ETS variant 4. In A vs. C, the most significant cluster had 14 genes: BCL2-like 1, galectin 3, MCL1 BCL2 family apoptosis regulator, DNA damage inducible transcript 3, BCL2 apoptosis regulator, CTGF, matrix metallopeptidase 7, early growth response 1, kinase insert domain receptor, TIMP metallopeptidase inhibitor 1, apolipoprotein E, VWF, cyclin D1 and placental growth factor. Histological evidence was presented to confirm the makeup of the hubs prior to logistic regression analysis to differentiate benign and malignant neoplasms. The results of the present study may aid in the search for novel potential biomarkers for the differential diagnosis, prognosis and development of drug targets of thyroid neoplasm.

Kim H, Son S, Shin I
Role of the CCN protein family in cancer.
BMB Rep. 2018; 51(10):486-492 [PubMed] Free Access to Full Article Related Publications
The CCN protein family is composed of six matricellular proteins, which serve regulatory roles rather than structural roles in the extracellular matrix. First identified as secreted proteins which are induced by oncogenes, the acronym CCN came from the names of the first three members: CYR61, CTGF, and NOV. All six members of the CCN family consist of four cysteine-rich modular domains. CCN proteins are known to regulate cell adhesion, proliferation, differentiation, and apoptosis. In addition, CCN proteins are associated with cardiovascular and skeletal development, injury repair, inflammation, and cancer. They function either through binding to integrin receptors or by regulating the expression and activity of growth factors and cytokines. Given their diverse roles related to the pathology of certain diseases such as fibrosis, arthritis, atherosclerosis, diabetic nephropathy, retinopathy, and cancer, there are many emerging studies targeting CCN protein signaling pathways in attempts to elucidate their potentials as therapeutic targets. [BMB Reports 2018; 51(10): 486-493].

Ji Y, Jia L, Zhang Y, et al.
Antitumor activity of the plant extract morin in tongue squamous cell carcinoma cells.
Oncol Rep. 2018; 40(5):3024-3032 [PubMed] Related Publications
Morin is a naturally occurring bioflavonoid originally isolated from members of the Moraceae family of flowering plants and it possesses antitumor activity in various human cancer cells. The present study explored the antitumor effects of morin in tongue squamous cell carcinoma (TSCC) cells in vitro and investigated the underlying molecular events. A TSCC cell line was treated with different doses of morin for up to 48 h. Analyses of cell viability, using Cell Counting Kit‑8 (CCK‑8), EdU incorporation, colony formation, flow cytometric analysis of cell cycle distribution and apoptosis, wound healing assay, western blot analysis and qRT‑PCR assays, were then performed. The data revealed that morin treatment reduced Cal27 cell proliferation and reduced the migration capacity of tumor cells in a dose‑dependent manner. Morin treatment also significantly upregulated mammalian sterile 20‑like 1 (MST1) and MOB kinase activator 1 (MOB1) phosphorylation in CAL27 cells, but suppressed nuclear translocation of yes‑associated protein (YAP) through the induction of YAP phosphorylation in Cal27 cells. Moreover, the expression of YAP‑targeting genes, such as CTGF, CYR61 and ANKRD, was downregulated in morin‑treated TSCC cells, indicating that morin was able to activate the Hippo signaling pathway to inhibit YAP nuclear translocation and YAP‑related transcriptional activity in TSCC cells. In conclusion, the data from the present study demonstrated that morin produces anti‑TSCC activity in vitro through activation of the Hippo signaling pathway and the downstream suppression of YAP activity in TSCC cells. Future studies should assess the clinical antitumor effects of morin.

Khawar IA, Park JK, Jung ES, et al.
Three Dimensional Mixed-Cell Spheroids Mimic Stroma-Mediated Chemoresistance and Invasive Migration in hepatocellular carcinoma.
Neoplasia. 2018; 20(8):800-812 [PubMed] Free Access to Full Article Related Publications
Interactions between cancer cells and cancer-associated fibroblasts (CAFs) within the tumor microenvironment (TME) play an important role in promoting the profibrotic microenvironment and epithelial-mesenchymal transition (EMT), resulting in tumor progression and drug resistance in hepatocellular carcinoma (HCC). In the present study, we developed a mixed-cell spheroid model using Huh-7 HCC cells and LX-2 stellate cells to simulate the in vivo tumor environment with respect to tumor-CAF interactions. Spheroids were cultured from cancer cells alone (monospheroids) or as a mixture (mixed-cell spheroids) in ultra-low-attachment plates. Compact, well-mixed, and stroma-rich mixed-cell spheroids were successfully established with heterotypic cell-cell contacts shown by the presence of gap junctions and desmosomes. Mixed-cell spheroids showed enhanced expression of collagen type-I (Col-I) and pro-fibrotic factors such as, transforming growth factor beta1 (TGF-β1), and connective tissue growth factor (CTGF) compared to the levels expressed in mono-spheroids. The EMT phenotype was evident in mixed-cell spheroids as shown by the altered expression of E-cadherin and vimentin. Differential drug sensitivity was observed in mixed-cell spheroids, and only sorafenib and oxaliplatin showed dose-dependent antiproliferative effects. Simultaneous treatment with TGF-β inhibitors further improved sorafenib efficacy in the mixed-cell spheroids, indicating the involvement of TGF-β in the mechanism of sorafenib resistance. In 3D matrix invasion assay, mixed-cell spheroids exhibited fibroblast-led collective cell movement. Overall, our results provide evidence that mixed-cell spheroids formed with Huh-7 and LX-2 cells well represent HCC tumors and their TME in vivo and hence are useful in studying tumor-stroma interactions as mechanisms associated with drug resistance and increased cell motility.

Zheng CH, Chen XM, Zhang FB, et al.
Inhibition of CXCR4 regulates epithelial mesenchymal transition of NSCLC via the Hippo-YAP signaling pathway.
Cell Biol Int. 2018; 42(10):1386-1394 [PubMed] Related Publications
CXCR4 has been shown to play a key role in the metastasis of non-small cell lung cancer (NSCLC). And CXCR may be associated with the Hippo-Yes kinase-associated protein (YAP) pathway, thus involving in the occurrence and progression of NSCLC. This study aims to investigate the effect of CXCR4 inhibition on epithelial-mesenchymal transition (EMT), invasion and migration of NSCLC cells via the Hippo-YAP pathway. QRT-PCR and Western blot were employed to detect CXCR4 expression in NSCLC cell lines. A549 and H1299 cells were treated with WZ811 (0, 10, 30, and 50 µM), and A549 cells were also divided into the Control, WZ811, YAP siRNA, and WZ811 + YAP groups. Wound-healing, Transwell assay, immunofluorescent staining, and a luciferase reporter gene assay were performed in this experiment. Compared with human bronchial epithelial (HBE) cells, CXCR4 expression was up-regulated in NSCLC cell lines. WZ811 increased E-cadherin; decreased expression of Twist, vimentin, Snail, p-YAP, CTGF, and BIRC5; blocked GTIIC reporter activity; and reduced migration and invasion of A549 cells, all in a dose-dependent manner. YAP siRNA had a similar effect to WZ811 by inhibiting EMT, invasion and migration of A549 cells. However, compared with A549 cells in the YAP siRNA and WZ811 groups, cells in the WZ811 + YAP group showed a dramatically enhanced EMT phenotype as well as invasion and migration abilities. Inhibition of CXCR4 may reduce EMT, invasion and migration of NSCLC cells, thereby providing a new therapeutic target for NSCLC.

Hou CH, Yang RS, Tsao YT
Connective tissue growth factor stimulates osteosarcoma cell migration and induces osteosarcoma metastasis by upregulating VCAM-1 expression.
Biochem Pharmacol. 2018; 155:71-81 [PubMed] Related Publications
Osteosarcoma is the most common bone malignancy that occurs in the young population. After osteosarcoma cells metastasize to the lung, prognosis is very poor owing to difficulties in early diagnosis and effective treatment. Recently, connective tissue growth factor (CTGF) was reported to be a critical contributor to osteosarcoma metastasis. However, the detailed mechanism associated with CTGF-directed migration in bone neoplasms is still mostly unknown. Through the in vivo and in vitro examination of osteosarcoma cells, this study suggests that VCAM-1 up-regulation and increased osteosarcoma cell migration are involved in this process. Antagonizing αvβ3 integrin inhibited cell migration. Moreover, FAK, PI3K, Akt and NF-κB activation were also shown to be involved in CTGF-mediated osteosarcoma metastasis. Taken together, CTGF promotes VCAM-1 production and further induces osteosarcoma metastasis via the αvβ3 integrin/FAK/PI3K/Akt/NF-κB signaling pathway, which could represent a promising clinical target to improve patient outcome.

Cheng JC, Wang EY, Yi Y, et al.
S1P Stimulates Proliferation by Upregulating CTGF Expression through S1PR2-Mediated YAP Activation.
Mol Cancer Res. 2018; 16(10):1543-1555 [PubMed] Related Publications
Dysregulation of the Hippo pathway in the liver results in overgrowth and eventually tumorigenesis. To date, several upstream mechanisms have been identified that affect the Hippo pathway, which ultimately regulate YAP, the major downstream effector of the pathway. However, upstream regulators of the Hippo pathway in the liver remain poorly defined. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that has been shown to stimulate hepatocellular carcinoma (HCC) cell proliferation, but whether the Hippo pathway is involved in S1P-stimulated HCC cell proliferation remains to be determined. Here it is demonstrated that S1P activates YAP and that the S1P receptor 2 (S1PR2/S1P2) mediates S1P-induced YAP activation in both human and mouse HCC cells. S1P promotes YAP-mediated upregulation of cysteine-rich protein 61 and connective tissue growth factor (CTGF), and stimulates HCC cell proliferation. By using siRNA-mediated knockdown approaches, only CTGF was required for S1P-stimulated cell proliferation. Of note, S1P activates YAP in a MST1/2-independent manner suggesting that the canonical Hippo kinase is not required for S1P-mediated proliferation in liver. The upregulation of CTGF and S1P2 were also observed in liver-specific YAP overexpression transgenic mouse hepatocytes. Moreover, YAP regulated liver differentiation-dependent gene expression by influencing the chromatin binding of HNF4α based on ChIP-seq analysis. Finally, results using gain- and loss-of-function approaches demonstrate that HNF4α negatively regulated S1P-induced CTGF expression.

Jin D, Wu Y, Shao C, et al.
Norcantharidin reverses cisplatin resistance and inhibits the epithelial mesenchymal transition of human non‑small lung cancer cells by regulating the YAP pathway.
Oncol Rep. 2018; 40(2):609-620 [PubMed] Free Access to Full Article Related Publications
Non‑small cell lung cancer (NSCLC) accounts for >80% of all lung cancer cases, which are the leading cause of cancer‑related mortality worldwide. The clinical efficacy of available therapies for NSCLC is often limited due to the development of resistance to anticancer drugs, particularly to cisplatin (DDP). Norcantharidin (NCTD) is a traditional Chinese medicine used in the treatment of many types of cancer, to which patients do not develop resistance. The aim of the present study was to examine the potential synergistic effects of NCTD and DPP on the viability of the the DDP‑resistant NSCLC cell line, A549/DDP. We further explored the potential underlying mechanisms by examining the expression of the oncogene, Yes-associated protein 1 (YAP), whose activation was recently found to be associated with drug resistance. We further examined a series of human lung cancer cell lines and tissues from patients with lung cancer, which revealed that YAP activation contributed to lung cancer initiation, progression and metastasis, and was associated with a poor prognosis, and confering resistance against targeted therapies. Moreover, YAP expression was evaluated in the A549/DDP cells treated with NCTD, DDP, or both drugs. The combined treatment significantly sensitized the A549/DDP cells to DDP‑induced growth inhibition by reducing YAP promoter activity (based on transcriptional expression) and the expression of its target genes, connective tissue growth factor (CTGF) and cysteine rich angiogenic inducer 61 (CYR61). Furthermore, compared to the individual treatments, combined treatment increased cell apoptosis and senescence, and decreased epithelial‑to‑mesenchymal transition and the cell migratory and invasive ability. On the whole, our data indicate that the application of NCTD with reverses DDP resistance and thus, this combined treatment may have promising prospects for use in improving the outcome of patients with NSCLC.

Hutchenreuther J, Vincent K, Norley C, et al.
Activation of cancer-associated fibroblasts is required for tumor neovascularization in a murine model of melanoma.
Matrix Biol. 2018; 74:52-61 [PubMed] Related Publications
Metastatic melanoma is highly fatal. Within the tumor microenvironment, the role of cancer-associated fibroblasts (CAFs) in melanoma metastasis and progression is relatively understudied. The matricellular protein CCN2 (formerly termed connective tissue growth factor, CTGF) is overexpressed, in a fashion independent of BRAF mutational status, by CAFs in melanoma. Herein, we find, in human melanoma patients, that CCN2 expression negatively correlates with survival and positively correlates with expression of neovascularization markers. To assess the role of CAFs in melanoma progression, we used C57BL/6 mice expressing a tamoxifen-dependent cre recombinase expressed under the control of a fibroblast-specific promoter/enhancer (COL1A2) to delete CCN2 postnatally in fibroblasts. Mice deleted or not for CCN2 in fibroblasts were injected subcutaneously with B16-F10 melanoma cells. Loss of CCN2 in CAFs resulted in reduced CAF activation, as detected by staining with anti-α-smooth muscle actin antibodies, and reduced tumor-induced neovascularization, as detected by micro-computed tomography (micro-CT) and staining with anti-CD31 antibodies. CCN2-deficient B16(F10) cells were defective in a tubule formation/vasculogenic mimicry assay in vitro. Mice deleted for CCN2 in CAFs also showed impaired vasculogenic mimicry of subcutaneously-injected B16-F10 cells in vivo. Our results provide new insights into the cross-talk among different cell types in the tumor microenvironment and suggest CAFs play a heretofore unappreciated role by being essential for tumor neovascularization via the production of CCN2. Our data are consistent with the hypothesis that activated CAFs are essential for melanoma metastasis and that, due to its role in this process, CCN2 is a therapeutic target for melanoma.

Deng Q, Jiang G, Wu Y, et al.
GPER/Hippo-YAP signal is involved in Bisphenol S induced migration of triple negative breast cancer (TNBC) cells.
J Hazard Mater. 2018; 355:1-9 [PubMed] Related Publications
Nowadays, risk factors of triple-negative breast cancer (TNBC) metastasis are not well identified. Our present study reveals that an industrial chemical, bisphenol S (BPS), can promote the migration, but not the proliferation, of TNBC cells in vitro. BPS activates YAP, a key effector of Hippo pathway, by inhibiting its phosphorylation, which promotes YAP nuclear accumulation and up-regulates its downstream genes such as CTGF and ANKRD1. Inhibition of YAP blocks the BPS-triggered cell migration and up-regulation of fibronectin (FN) and vimentin (Vim). BPS rapidly decreases the phosphorylation levels of LATS1 (Ser909) in TNBC cells, which regulates the activation and functions of YAP. Silencing LATS1/2 by siRNA increases BPS-induced dephosphorylation of YAP and extended the half-life of YAP protein. Inhibition of G protein-coupled estrogen receptor 1 (GPER) and its downstream PLCβ/PKC signals attenuate the effects of BPS-induced YAP dephosphorylation and CTGF up-regulation. Targeted inhibition of GPER/YAP inhibits BPS-induced migration of TNBC cells. Collectively, we reveal that GPER/Hippo-YAP signal is involved in BPS-induced migration of TNBC cells.

Cardozo ER, Foster R, Karmon AE, et al.
MicroRNA 21a-5p overexpression impacts mediators of extracellular matrix formation in uterine leiomyoma.
Reprod Biol Endocrinol. 2018; 16(1):46 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: MicroRNAs (MiR) may promote fibroid development via altered expression of genes involved in cell proliferation and ECM formation, and evidence supports aberrant expression of MicroRNA (MiR) 21a-5p in fibroids. The purpose of this study was to investigate the functional significance of MiR 21a-5p overexpression in the pathobiology of leiomyomata (fibroids).
METHODS: A basic science experimental design using immortalized fibroid and myometrial cell lines derived from patient-matched specimens was used. Stable overexpression of MiR-21a-5p in an immortalized fibroid and patient matched myometrial cell line was achieved through lentiviral vector infection. Main outcome measures were MiR-21-5p overexpression, target gene and protein expression, collagen (COL1A1) production, cell proliferation, cell migration, and cell cycle stages of fibroid and myometrial immortalized cell lines.
RESULTS: MiR-21a-5p was overexpressed to similar levels in fibroid and myometrial cell lines after lentiviral infection. Increased expression of miR-21 resulted in increased gene and protein expression of TGF-β3 in both fibroid and myometrial cells. Changes in expression of the ECM genes Fibronectin, Collagen 1A1, CTGF, Versican and DPT were seen in both fibroid and myometrial cells. Changes were also seen in Matrix Metalloproteinase (MMP) related genes including MMP 2, MMP 9, MMP 11 and Serpine 1 in both fibroid and myometrial cells. MiR-21 upregulation resulted in increased proliferation and migration in fibroid cells compared to myometrial cells.
CONCLUSIONS: MiR-21a-5p overexpression results in changes in the expression of ECM mediators in both fibroid and myometrial cells, and increased cell proliferation in fibroid cells. These finding suggest a potential functional role of MiR-21a-5p in the development of uterine fibroids and warrant further investigation.

Santolla MF, Lappano R, Cirillo F, et al.
miR-221 stimulates breast cancer cells and cancer-associated fibroblasts (CAFs) through selective interference with the A20/c-Rel/CTGF signaling.
J Exp Clin Cancer Res. 2018; 37(1):94 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: MicroRNA (miRNAs) are non-coding small RNA molecules that regulate gene expression by inhibiting the translation of target mRNAs. Among several dysregulated miRNAs in human cancer, the up-regulation of miR-221 has been associated with development of a variety of hematologic and solid malignancies. In this study, we investigated the involvement of miR-221 in breast cancer.
METHODS: TaqMan microRNA assay was used to detect the miR-221 levels in normal cells and in MDA-MB 231 and SkBr3 breast cancer cells as well as in main players of the tumor microenvironment, namely cancer-associated fibroblasts (CAFs). miR-221 mimic sequence and locked nucleic acid (LNA)-i-miR-221 construct were used to induce or inhibit, respectively, the miR-221 expression in cells used. Quantitative PCR and western blotting analysis were performed to evaluate the levels of the miR-221 target gene A20 (TNFAIP3), as well as the member of the NF-kB complex namely c-Rel and the connective tissue growth factor (CTGF). Chromatin immunoprecipitation (ChIP) assay was performed to ascertain the recruitment of c-Rel to the CTFG promoter. Finally, the cell growth and migration in the presence of LNA-i-miR-221 or silencing c-Rel and CTGF by specific short hairpin were assessed by cell count, colony formation and boyden chambers assays. Statistical analysis was performed by ANOVA.
RESULTS: We first demonstrated that LNA-i-miR-221 inhibits both endogenous and ectopic expression of miR-221 in our experimental models. Next, we found that the A20 down-regulation, as well as the up-regulation of c-Rel induced by miR-221 were no longer evident using LNA-i-miR-221. Moreover, we established that the miR-221 dependent recruitment of c-Rel to the NF-kB binding site located within the CTGF promoter region is prevented by using LNA-i-miR-221. Furthermore, we determined that the up-regulation of CTGF mRNA and protein levels by miR-221 is no longer evident using LNA-i-miR221 and silencing c-Rel. Finally, we assessed that cell growth and migration induced by miR-221 in MDA-MB 231 and SkBr3 breast cancer cells as well as in CAFs are abolished by LNAi-miR-221 and silencing c-Rel or CTGF.
CONCLUSIONS: Overall, these data provide novel insights into the stimulatory action of miR-221 in breast cancer cells and CAFs, suggesting that its inhibition may be considered toward targeted therapeutic approaches in breast cancer patients.

Jiang Z, Zhou C, Cheng L, et al.
Inhibiting YAP expression suppresses pancreatic cancer progression by disrupting tumor-stromal interactions.
J Exp Clin Cancer Res. 2018; 37(1):69 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Hippo/YAP pathway is known to be important for development, growth and organogenesis, and dysregulation of this pathway leads to tumor progression. We and others find that YAP is up-regulated in pancreatic ductal adenocarcinoma (PDAC) and associated with worse prognosis of patients. Activated pancreatic stellate cells (PSCs) forming the components of microenvironment that enhance pancreatic cancer cells (PCs) invasiveness and malignance. However, the role and mechanism of YAP in PDAC tumor-stromal interaction is largely unknown.
METHODS: The expression of YAP in Pancreatic cancer cell lines and PDAC samples was examined by Western blot and IHC. The biological role of YAP on cancer cell proliferation, epithelial-mesenchymal transition (EMT) and invasion were evaluated by MTT, Quantitative real-time PCR analysis, Western blot analysis and invasion assay. The effect of YAP on PSC activation was evaluated by PC-PSC co-culture conditions and xenograft PDAC mouse model.
RESULTS: Firstly, knockdown of YAP inhibits PDAC cell proliferation and invasion in vitro. In addition, YAP modulates the PC and PSC interaction via reducing the production of connective tissue growth factor (CTGF) from PCs, inhibits paracrine-mediated PSC activation under PC-PSC co-culture conditions and in turn disrupts TGF-β1-mediated tumor-stromal interactions. Lastly, inhibiting YAP expression prevents tumor growth and suppresses desmoplastic reaction in vivo.
CONCLUSIONS: These results demonstrate that YAP contributes to the proliferation and invasion of PC and the activation of PSC via tumor-stromal interactions and that targeting YAP may be a promising therapeutic strategy for PDAC treatment.

Ramazani Y, Knops N, Elmonem MA, et al.
Connective tissue growth factor (CTGF) from basics to clinics.
Matrix Biol. 2018; 68-69:44-66 [PubMed] Related Publications
Connective tissue growth factor, also known as CCN2, is a cysteine-rich matricellular protein involved in the control of biological processes, such as cell proliferation, differentiation, adhesion and angiogenesis, as well as multiple pathologies, such as tumor development and tissue fibrosis. Here, we describe the molecular and biological characteristics of CTGF, its regulation and various functions in the spectrum of development and regeneration to fibrosis. We further outline the preclinical and clinical studies concerning compounds targeting CTGF in various pathologies with the focus on heart, lung, liver, kidney and solid organ transplantation. Finally, we address the advances and pitfalls of translational fibrosis research and provide suggestions to move towards a better management of fibrosis.

Liczbiński P, Bukowska B
Molecular mechanism of amygdalin action in vitro: review of the latest research.
Immunopharmacol Immunotoxicol. 2018; 40(3):212-218 [PubMed] Related Publications
Amygdalin, named as 'laetrile' and 'vitamin B-17' was initially supposed to be a safe drug for cancer treatment and was recognized by followers of natural medicine since it has been considered to be hydrolyzed only in cancer cells releasing toxic hydrogen cyanide (HCN), and thus destroying them. Unfortunately, current studies have shown that HCN is also released in normal cells, therefore it may not be safe for human organism. However, there have still been research works conducted on anti-cancer properties of this compound. In vitro experiments have shown induction of apoptosis by amygdalin as a result of increased expression of Bax protein and caspase-3 and reduced expression of antiapoptotic BcL-2protein. Amygdalin has also been shown to inhibit the adhesion of breast cancer cells, lung cancer cells and bladder cancer cells by decreased expression of integrin's, reduction of catenin levels and inhibition of the Akt-mTOR pathway, which may consequently lead to inhibition of metastases of cancer cells. It has also been revealed that amygdalin in renal cancer cells increased expression of p19 protein resulting in inhibition of cell transfer from G1-phase to S-phase, and thus inhibited cell proliferation. Other studies have indicated that amygdalin inhibits NF-kβ and NLRP3 signaling pathways, and consequently has anti-inflammatory effect due to reducing the expression of proinflammatory cytokines such as pro-IL-1β. Moreover, the effect of amygdalin on TGFβ/CTGF pathway, anti-fibrous activity and expression of follistatin resulting in activation of muscle cells growth has been reported. This compound might be applicable in the treatment of various cancer cell types.

Zeng Y, Shen Z, Gu W, Wu M
Inhibition of hepatocellular carcinoma tumorigenesis by curcumin may be associated with CDKN1A and CTGF.
Gene. 2018; 651:183-193 [PubMed] Related Publications
This study aimed to explore crucial genes, transcription factors (TFs), and microRNAs (miRNAs) associated with the effects of curcumin against hepatocellular carcinoma (HCC). We downloaded data (GSE59713) from Gene Expression Omnibus to analyze differentially expressed genes (DEGs) between curcumin-treated and untreated HCC cell lines. Then, we identified the disease ontology (DO) and functional enrichment analysis of these DEGs and analyzed their protein-protein interactions (PPIs). Additionally, we constructed TF-target gene and miRNA-target gene regulatory networks and explored the potential functions of these DEGs. Finally, we detected the expression of CDKN1A, CTGF, LEF1 TF and MIR-19A regulated by curcumin in PLC/PRF/5 cells using RT-PCR. In total, 345 upregulated and 212 downregulated genes were identified. The main enriched pathway of upregulated genes was the TNF signaling pathway. The downregulated genes were significantly enriched in TGF-beta signaling pathway. In addition, most DEGs were significantly enriched in DO terms such as liver cirrhosis, hepatitis, hepatitis C and cholestasis (eg., CTGF). In the constructed PPI network, CDKN1A and CTGF were the key proteins. Moreover, LEF1, CDKN1A, and miR-19A that regulated CTGF were highlighted in the regulatory networks. Furthermore, the expression of CDKN1A, CTGF, LEF1 TF and miR-19A regulated by curcumin in PLC/PRF/5 cells was consistent with the aforementioned bioinformatics analysis results. To conclude, curcumin might exert its protective effects against HCC tumorigenesis by downregulating LEF1 and downregulating CTGF regulated by MIR-19A and upregulating CDKN1A expression.

Kang W, Huang T, Zhou Y, et al.
miR-375 is involved in Hippo pathway by targeting YAP1/TEAD4-CTGF axis in gastric carcinogenesis.
Cell Death Dis. 2018; 9(2):92 [PubMed] Free Access to Full Article Related Publications
miR-375 is a tumor-suppressive microRNA (miRNA) in gastric cancer (GC). However, its molecular mechanism remains unclear. The aim of this study is to comprehensively investigate how miR-375 is involved in Hippo pathway by targeting multiple oncogenes. miR-375 expression in gastric cancer cell lines and primary GC was investigated by qRT-PCR. The regulation of YAP1, TEAD4, and CTGF expression by miR-375 was evaluated by qRT-PCR, western blot, and luciferase reporter assays, respectively. The functional roles of the related genes were examined by siRNA-mediated knockdown or ectopic expression assays. The clinical significance and expression correlation analysis of miR-375, YAP1, and CTGF were performed in primary GCs. TCGA cohort was also used to analyze the expression correlation of YAP1, TEAD4, CTGF, and miR-375 in primary GCs. miR-375 was down-regulated in GC due to promoter methylation and histone deacetylation. miR-375 downregulation was associated with unfavorable outcome and lymph node metastasis. Ectopic expression of miR-375 inhibited tumor growth in vitro and in vivo. Three components of Hippo pathway, YAP1, TEAD4 and CTGF, were revealed to be direct targets of miR-375. The expression of three genes showed a negative correlation with miR-375 expression and YAP1 re-expression partly abolished the tumor-suppressive effect of miR-375. Furthermore, CTGF was confirmed to be the key downstream of Hippo-YAP1 cascade and its knockdown phenocopied siYAP1 or miR-375 overexpression. YAP1 nuclear accumulation was positively correlated with CTGF cytoplasmic expression in primary GC tissues. Verteporfin exerted an anti-oncogenic effect in GC cell lines by quenching CTGF expression through YAP1 degradation. In short, miR-375 was involved in the Hippo pathway by targeting YAP1-TEAD4-CTGF axis and enriched our knowledge on the miRNA dysregulation in gastric tumorigenesis.

Kopp S, Sahana J, Islam T, et al.
The role of NFκB in spheroid formation of human breast cancer cells cultured on the Random Positioning Machine.
Sci Rep. 2018; 8(1):921 [PubMed] Free Access to Full Article Related Publications
Human MCF-7 breast cancer cells were exposed to a Random Positioning Machine (RPM). After 24 hours (h) the cells grew either adherently within a monolayer (AD) or within multicellular spheroids (MCS). AD and MCS populations were separately harvested, their cellular differences were determined performing qPCR on genes, which were differently expressed in AD and MCS cells. Gene array technology was applied to detect RPM-sensitive genes in MCF-7 cells after 24 h. Furthermore, the capability to form multicellular spheroids in vitro was compared with the intracellular distribution of NF-kappaB (NFκB) p65. NFκB was equally distributed in static control cells, but predominantly localized in the cytoplasm in AD cells and nucleus in MCS cells exposed to the RPM. Gene array analyses revealed a more than 2-fold change of only 23 genes including some whose products are affected by oxygen levels or regulate glycolysis. Significant upregulations of the mRNAs of enzymes degrading heme, of ANXA1, ANXA2, CTGF, CAV2 and ICAM1, as well as of FAS, Casp8, BAX, p53, CYC1 and PARP1 were observed in MCS cells as compared with 1g-control and AD cells. An interaction analysis of 47 investigated genes suggested that HMOX-1 and NFκB variants are activated, when multicellular spheroids are formed.

Yang L, Hou J, Cui XH, et al.
MiR-133b regulates the expression of CTGF in epithelial-mesenchymal transition of ovarian cancer.
Eur Rev Med Pharmacol Sci. 2017; 21(24):5602-5609 [PubMed] Related Publications
OBJECTIVE: To explore the role of miR-133b in ovarian cancer and to preliminarily elucidate the mechanism of miR-133b in epithelial-mesenchymal transition (EMT) of ovarian cancer.
PATIENTS AND METHODS: MiR-133b was detected in ovarian cancer specimens, and the relationship of miR-133b with each pathological index and clinical index of ovarian cancer was analyzed. The action targets of miR-133b in ovarian cancer were analyzed systematically and studied deeply via the target validation and cell function validation. Finally, the possible reasons of ovarian cancer metastasis were analyzed through the molecular regulation mechanism in EMT of ovarian cancer.
RESULTS: The miR-133b level in ovarian cancer was significantly lower than in normal ovarian tissues and benign ovarian tumors (p<0.05). The level of miR-133b in ovarian cancer was related to differentiated degree and lymphatic metastasis. Dual-luciferase assay indicated that connective tissue growth factor (CTGF) was the target gene regulated by miR-133b. Reverse transcriptase-polymerase chain reaction (RT-PCR) as well as Western blot results proved that the expression level of E-cadherin representing the epithelial cell phenotype was increased, while the expression level of vimentin representing the mesenchymal cell phenotype was decreased. Transwell assay confirmed that the migration and invasion abilities of ovarian cancer cells declined after transfection with miR-133b plasmid. After co-transfection with miR-133b and CTGF overexpression plasmids, RT-PCR and Western blotting proved that the expression level of E-cadherin representing the epithelial cell phenotype was decreased, while the expression level of vimentin representing the mesenchymal cell phenotype was increased; transwell assay confirmed that the cell migration and invasion abilities were increased after co-transfection.
CONCLUSIONS: The results of this study showed that miR-133b may serve as a new molecular marker of EMT of ovarian cancer, and act as a molecular marker of differentiated degree and lymphatic metastasis of ovarian cancer.

Feustel S, Ayón-Pérez F, Sandoval-Rodriguez A, et al.
Protective Effects of
J Immunol Res. 2017; 2017:6063850 [PubMed] Free Access to Full Article Related Publications
Chronic hepatitis B infection treatment implicates a long-lasting treatment.

Lee HJ, Ewere A, Diaz MF, Wenzel PL
TAZ responds to fluid shear stress to regulate the cell cycle.
Cell Cycle. 2018; 17(2):147-153 [PubMed] Free Access to Full Article Related Publications
Physical forces associated with tumor growth and drainage alter cancer cell invasiveness and metastatic potential. We previously showed that fluid frictional force, or shear stress, typical of lymphatic flow induces YAP1/TAZ activation in prostate cancer cells to promote motility dependent upon YAP1 but not TAZ. Here, we show that shear stress elevates TAZ protein levels and promotes TAZ nuclear localization. Increased TAZ activity drives increased DNA synthesis and induces AMOTL2, ANKRD1, and CTGF gene transcription independently of YAP1. Ectopic expression of constitutively activated TAZ increases expression of these TAZ target genes and promotes cell proliferation of prostate cancer cells. Conversely, silencing of TAZ results in reduced proliferation. Together, our data show that force-induced TAZ regulates signaling that dictates cell division, and suggest that TAZ may govern cellular proliferation of cancer cells traveling through the lymphatics in response to biophysical cues.

Sandoval-Bórquez A, Polakovicova I, Carrasco-Véliz N, et al.
MicroRNA-335-5p is a potential suppressor of metastasis and invasion in gastric cancer.
Clin Epigenetics. 2017; 9:114 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Multiple aberrant microRNA expression has been reported in gastric cancer. Among them, microRNA-335-5p (miR-335), a microRNA regulated by DNA methylation, has been reported to possess both tumor suppressor and tumor promoter activities.
RESULTS: Herein, we show that miR-335 levels are reduced in gastric cancer and significantly associate with lymph node metastasis, depth of tumor invasion, and ultimately poor patient survival in a cohort of Amerindian/Hispanic patients. In two gastric cancer cell lines AGS and, Hs 746T the exogenous miR-335 decreases migration, invasion, viability, and anchorage-independent cell growth capacities. Performing a PCR array on cells transfected with miR-335, 19 (30.6%) out of 62 genes involved in metastasis and tumor invasion showed decreased transcription levels. Network enrichment analysis narrowed these genes to nine (PLAUR, CDH11, COL4A2, CTGF, CTSK, MMP7, PDGFA, TIMP1, and TIMP2). Elevated levels of PLAUR, a validated target gene, and CDH11 were confirmed in tumors with low expression of miR-335. The 3'UTR of CDH11 was identified to be directly targeted by miR-335. Downregulation of miR-335 was also demonstrated in plasma samples from gastric cancer patients and inversely correlated with DNA methylation of promoter region (Z = 1.96,
CONCLUSIONS: Comprehensive evaluation of metastasis and invasion pathway identified a subset of associated genes and confirmed PLAUR and CDH11, both targets of miR-335, to be overexpressed in gastric cancer tissues. DNA methylation of miR-335 may be a promissory strategy for non-invasive approach to gastric cancer.

Ando T, Charindra D, Shrestha M, et al.
Tissue inhibitor of metalloproteinase-1 promotes cell proliferation through YAP/TAZ activation in cancer.
Oncogene. 2018; 37(2):263-270 [PubMed] Related Publications
Tissue inhibitor of metalloproteinase-1 (TIMP-1), a member of the TIMP family (TIMP-1 to 4), is highly expressed in various types of cancer and forms a complex with its receptor CD63 and Integrin β1. However, the precise oncogenic mechanism of TIMP-1 remains unclear. Yes-associated protein (YAP) and transcriptional co-activator with PDZ binding motif (TAZ) are transcription co-activators enhancing the transcription of specific genes related to cell proliferation. But the mechanism of aberrant YAP/TAZ activation in cancer is not fully understood. Here, we showed that TIMP-1 activates YAP/TAZ as novel downstream targets to promote cell proliferation. The TIMP-1-CD63-Integrin β1 axis activates Src and promotes RhoA-mediated F-actin assembly, leading to LATS1/2 inactivation. This results in under-phosphorylation, protein stabilization and nuclear translocation of YAP/TAZ (YAP/TAZ activation); CTGF production; and cell proliferation. Furthermore, the TIMP-1-YAP/TAZ axis is aberrantly activated in various types of cancer cells or tissues. TIMP-1 knockdown inhibits cell proliferation through YAP/TAZ inactivation in cancer cells. This study found that TIMP-1 accelerates cell proliferation through YAP/TAZ activation in cancer, and suggests the TIMP-1-YAP/TAZ axis may be a novel potential drug target for cancer patients.

Dethlefsen C, Hansen LS, Lillelund C, et al.
Exercise-Induced Catecholamines Activate the Hippo Tumor Suppressor Pathway to Reduce Risks of Breast Cancer Development.
Cancer Res. 2017; 77(18):4894-4904 [PubMed] Related Publications
Strong epidemiologic evidence documents the protective effect of physical activity on breast cancer risk, recurrence, and mortality, but the underlying mechanisms remain to be identified. Using human exercise-conditioned serum for breast cancer cell incubation studies and murine exercise interventions, we aimed to identify exercise factors and signaling pathways involved in the exercise-dependent suppression of breast cancer. Exercise-conditioned serum from both women with breast cancer (

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CTGF, Cancer Genetics Web: http://www.cancer-genetics.org/CTGF.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999