CD19

Gene Summary

Gene:CD19; CD19 molecule
Aliases: B4, CVID3
Location:16p11.2
Summary:Lymphocytes proliferate and differentiate in response to various concentrations of different antigens. The ability of the B cell to respond in a specific, yet sensitive manner to the various antigens is achieved with the use of low-affinity antigen receptors. This gene encodes a cell surface molecule which assembles with the antigen receptor of B lymphocytes in order to decrease the threshold for antigen receptor-dependent stimulation. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:B-lymphocyte antigen CD19
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (8)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CD19 (cancer-related)

Gong W, Hoffmann JM, Stock S, et al.
Comparison of IL-2 vs IL-7/IL-15 for the generation of NY-ESO-1-specific T cells.
Cancer Immunol Immunother. 2019; 68(7):1195-1209 [PubMed] Related Publications
The anti-tumor efficacy of TCR-engineered T cells in vivo depends largely on less-differentiated subsets such as T cells with naïve-like T cell (T

Zhang R, Deng Q, Jiang YY, et al.
Effect and changes in PD‑1 expression of CD19 CAR‑T cells from T cells highly expressing PD‑1 combined with reduced‑dose PD‑1 inhibitor.
Oncol Rep. 2019; 41(6):3455-3463 [PubMed] Related Publications
CD19 chimeric antigen receptor (CAR) T cell therapy has changed the outcomes of relapsed/refractory B‑cell leukemia and lymphoma. However, its efficacy in patients with relapsed/refractory non‑Hodgkin lymphoma (NHL) has been less impressive compared with that in patients with acute lymphoid leukemia. Furthermore, immune checkpoints have a critical role in the immune system. Several clinical trials have confirmed the dramatic effects of programmed death‑1/programmed death‑ligand 1 (PD‑1/PD‑L1) inhibitors in numerous malignancies, but the immune‑associated adverse events of PD‑1/PD‑L1 inhibitors may occur in a number of systems. The aim of the present study was to investigate the combination of CD19 CAR‑T cells with a reduced dose of PD‑1 inhibitor. This method is expected to overcome the side-effects of PD‑1 inhibitors, while maintaining therapeutic efficacy. The findings demonstrated that a reduced dose of PD‑1 inhibitor did not affect the transfection rate, proliferation rate or cytokine secretion of CD19 CAR‑T cells. An interesting finding of the present study was that the number of PD‑1‑positive cells CAR‑T cells, measured by flow cytometry, declined when they were cultured in vitro, but returned to high levels with gradual prolongation of the co‑culture time of CD19 CAR‑T cells with lymphoma cells; however, there was no change in the mRNA expression of T cells and CAR‑T cells during this process. This phenomenon may be one of the reasons why the curative effect of CAR‑T cells on B‑cell lymphoma is unsatisfactory compared with B‑cell leukemia. The synergistic effect of a reduced‑dose PD‑1 inhibitor combined with CD19 CAR‑T cells from T cells highly expressing PD‑1 was confirmed in a mouse trial. Mice in the combined treatment group achieved the longest survival time. In this group, the proportion of CAR‑T cells and the level of interleukin‑6 were higher compared with those in the CAR‑T cell group. In conclusion, a reduced dose of a PD‑1 inhibitor combined with CD19 CAR‑T cells appears to be a promising treatment option for relapsed/refractory B‑NHL exhibiting high PD‑1 expression by T cells. This method may achieve good clinical efficacy while reducing the side-effects of PD‑1 inhibitors.

Shah NN, Fry TJ
Mechanisms of resistance to CAR T cell therapy.
Nat Rev Clin Oncol. 2019; 16(6):372-385 [PubMed] Related Publications
The successes with chimeric antigen receptor (CAR) T cell therapy in early clinical trials involving patients with pre-B cell acute lymphoblastic leukaemia (ALL) or B cell lymphomas have revolutionized anticancer therapy, providing a potentially curative option for patients who are refractory to standard treatments. These trials resulted in rapid FDA approvals of anti-CD19 CAR T cell products for both ALL and certain types of B cell lymphoma - the first approved gene therapies in the USA. However, growing experience with these agents has revealed that remissions will be brief in a substantial number of patients owing to poor CAR T cell persistence and/or cancer cell resistance resulting from antigen loss or modulation. Furthermore, the initial experience with CAR T cells has highlighted challenges associated with manufacturing a patient-specific therapy. Understanding the limitations of CAR T cell therapy will be critical to realizing the full potential of this novel treatment approach. Herein, we discuss the factors that can preclude durable remissions following CAR T cell therapy, with a primary focus on the resistance mechanisms that underlie disease relapse. We also provide an overview of potential strategies to overcome these obstacles in an effort to more effectively incorporate this unique therapeutic strategy into standard treatment paradigms.

Köhler M, Ehrenfeld S, Halbach S, et al.
B-Raf deficiency impairs tumor initiation and progression in a murine breast cancer model.
Oncogene. 2019; 38(8):1324-1339 [PubMed] Related Publications
Copy number gains, point mutations and epigenetic silencing events are increasingly observed in genes encoding elements of the Ras/Raf/MEK/ERK signaling axis in human breast cancer. The three Raf kinases A-Raf, B-Raf, and Raf-1 have an important role as gatekeepers in ERK pathway activation and are often dysregulated by somatic alterations of their genes or by the aberrant activity of receptor tyrosine kinases (RTKs) and Ras-GTPases. B-Raf represents the most potent Raf isoform and a critical effector downstream of RTKs and RAS proteins. Aberrant RTK signaling is mimicked by the polyoma middle T antigen (PyMT), which activates various oncogenic signaling pathways, incl. the RAS/ERK axis, in a similar manner as RTKs in human breast cancer. Mammary epithelial cell directed expression of PyMT in mice by the MMTV-PyMT transgene induces mammary hyperplasia progressing over adenoma to metastatic breast cancer with an almost complete penetrance. To understand the functional role of B-Raf in this model for luminal type B breast cancer, we crossed MMTV-PyMT mice with animals that either lack B-Raf expression in the mammary gland or express the signaling impaired B-Raf

Chi VLD, Garaud S, De Silva P, et al.
Age-related changes in the BACH2 and PRDM1 genes in lymphocytes from healthy donors and chronic lymphocytic leukemia patients.
BMC Cancer. 2019; 19(1):81 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Age-related genetic changes in lymphocyte subsets are not currently well documented. BACH2 is a transcription factor that plays an important role in immune-mediated homeostasis by tightly regulating PRDM1 expression in both B-cells and T-cells. BACH2 gene expression is highly sensitive to DNA damage in aged mice. This concept led us to investigate the variation in BACH2 and also PRDM1 expression in major lymphocyte subsets with age.
METHODS: Lymphocyte subsets from 60 healthy donors, aged from 20 to 90 years, and 41 untreated chronic lymphocytic leukemia patients were studied. BACH2 and PRDM1 gene expression was analyzed by real-time quantitative PCR. BACH2 gene expression was correlated with its protein expression. Lymphocyte apoptosis was evaluated after intracellular oxidative stress-inducing etoposide treatment of T and B cells.
RESULTS: Our analysis shows BACH2 mRNA downregulation with age in healthy donor CD4+, CD8+ T-cells and CD19+ B-cells. Decreased BACH2 expression was also correlated with an age-related reduction in CD8 + CD28+ T-cells. We found a strong correlation between age-related BACH2 downregulation and decreased CD4+ T-cell and CD19+ B-cell apoptosis. PRDM1, as expected, was significantly upregulated in CD4+ T-cells, CD8+ T-cells and CD19+ B-cells, and inversely correlated with BACH2. A comparison of untreated chronic lymphocytic leukemia patients with age-matched healthy donors reveals that BACH2 mRNA expression was further reduced in CD4+ T-cells, CD8+ T-cells and leukemic-B cells. PRDM1 gene expression was consequently significantly upregulated in CD4+ and CD8+ T-cells in chronic lymphocytic leukemia patients but not in their leukemic B-cells.
CONCLUSION: Overall, our data suggest that BACH2 and PRDM1 genes are significantly correlated with age in human immune cells and may be involved in immunosenescence.

Wang G, Liu W, Zou Y, et al.
Three isoforms of exosomal circPTGR1 promote hepatocellular carcinoma metastasis via the miR449a-MET pathway.
EBioMedicine. 2019; 40:432-445 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The role of exosomal circular RNAs (circRNAs) in Hepatocellular carcinoma (HCC) cells with high metastatic potential has been little studied.
METHODS: Exosomal circRNA from cells with non-metastatic (HepG2), low metastatic (97L), and high metastatic (LM3) potential were sequencing. Metastatic-related circRNAs in serum from HCC patients were measured and their association with clinical prognosis was evaluated. Furthermore, candidate functional circRNAs in LM3-derived exosomes was assessed.
FINDINGS: LM3 exosomes enhanced the cell migration and invasion potential of HepG2 and 97 L cells. CircPTGR1, a circRNA with three isoforms, was specifically expressed in exosomes from 97 L and LM3 cells, upregulated in serum exosomes from HCC patients and was associated with the clinical stage and prognosis. Knockdown of circPTGR1 expression suppressed the migration and invasion of HepG2 and 97L cells induced by co-culturing with LM3 exosomes. Bioinformatics, co-expression analysis, and a luciferase assay indicated that circPTGR1 competed with MET to target miR449a.
INTERPRETATION: Higher metastatic HCC cells can confer this potential on those with lower or no metastatic potential via exosomes with circPTGR1, resulting in increased migratory and invasive abilities in those cells. FUND: National Natural Science Foundation of China (No. 81470870, 81670601, 81570593), Guangdong Natural Science Foundation (No. 2015A030312013, 2015A030313038), Sci-tech Research Development Program of Guangdong Province (2014B020228003), Sci-tech Research Development Program of Guangzhou City (No. 201508020262, 201400000001-3, 201604020001, 201607010024), Innovative Funds for Small and Medium-Sized Enterprises of Guangdong Province (2016A010119103), Pearl River S&T Nova Program of Guangzhou (201710010178), and National 13th Five-Year Science and Technology Plan Major Projects of China (No. 2017ZX10203205-006-001).

Lin S, Liu Y, Goldin LR, et al.
Sex-related DNA methylation differences in B cell chronic lymphocytic leukemia.
Biol Sex Differ. 2019; 10(1):2 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Men are at higher risk of developing chronic lymphocytic leukemia (CLL) than women. DNA methylation has been shown to play important roles in a number of cancers. There are differences in the DNA methylation pattern between men and women. In this study, we investigated whether this contributes to the sex-related difference of B cell CLL risk.
METHODS: Using the HumanMethylation450 BeadChip, we profiled the genome-wide DNA methylation pattern of CD19
RESULTS: We identified 1043 sex-related differentially methylated positions (DMPs) related to CLL, 56 of which are located on autosomes and 987 on the X chromosome. Using published B cell RNA-sequencing data, we found 18 genes covered by the DMPs also have different expression levels in male and female CLL patients. Among them, TRIB1, an autosome gene, has been shown to promote tumor growth by suppressing apoptosis.
CONCLUSIONS: Our study represents the first epigenome-wide association study (EWAS) that investigates the sex-related differences in cancer, and indicated that DNA methylation differences might contribute to the sex-related difference in CLL risk.

Pepper MS, Alessandrini M, Pope A, et al.
Cell and gene therapies at the forefront of innovative medical care: Implications for South Africa.
S Afr Med J. 2018; 109(1):20-22 [PubMed] Related Publications
The fields of cell and gene therapy are moving rapidly towards providing innovative cures for incurable diseases. A current and highly topical example is immunotherapies involving T-cells that express chimeric antigen receptors (CAR T-cells), which have shown promise in the treatment of leukaemia and lymphoma. These new medicines are indicative of the changes we can anticipate in the practice of medicine in the near future. Despite their promise, they pose challenges for introduction into the healthcare sector in South Africa (SA), including: (i) that they are technologically demanding and their manufacture is resource intensive; (ii) that the regulatory system is underdeveloped and likely to be challenged by ethical, legal and social requirements that accompany these new therapies; and (iii) that costs are likely to be prohibitive, at least initially, and before economies of scale take effect. Investment should be made into finding novel and innovative ways to introduce these therapies into SA sooner rather than later to ensure that SA patients are not excluded from these exciting new opportunities.

Kim KH, Cheong HJ, Lee MY, et al.
Bortezomib Is More Effective to Side Population of RPMI8226 Myeloma Cells than Classical Anti-myeloma Agents.
Anticancer Res. 2019; 39(1):127-133 [PubMed] Related Publications
AIM: Cytotoxic chemotherapy-based treatment of multiple myeloma (MM) is not curative, and the disease eventually recurs. This is partially because although currently available anti-MM strategies are effective in targeting the bulk of tumor cells, they do not target the tumor-initiating subpopulation of cancer stem cells. This study investigated the prevalence and biological functions of side population (SP) cells in MM cell lines including RPMI8226, ARH77, MM.1R and IM 9.
MATERIALS AND METHODS: Flow cytometry-based Hoechst 33342 staining was used to evaluate the existence of SP cells. In addition, the ability of SP cells to regenerate the original population was determined.
RESULTS: The frequency of SP cells was heterogeneous. Most cell lines (ARH77, IM9, and MM.1R) contained fewer than 1% SP cells; however, RPMI8226 contained approximately 10% SP cells. Sorted SP cells showed a higher proliferative ability and clonogenicity than the MP in the RPMI8226 myeloma cell line. The activity of ATP-binding cassette subfamily G member 2 (ABCG2), which is associated with high rates of proliferation, was higher in SP cells. However, the expression of specific surface markers such as cluster of differentiation (CD)138, CD34, CD38, CD19, CD20, and CD27 did not differ between SP and MP cells. Bortezomib was the only agent that significantly affected proliferation of both SP and MP cells.
CONCLUSION: Our studies demonstrated that the SP fraction of myeloma cells possessed clonogenic tumor-initiating potential and revealed new mechanisms of action for bortezomib on SP cells.

Rohaan MW, Wilgenhof S, Haanen JBAG
Adoptive cellular therapies: the current landscape.
Virchows Arch. 2019; 474(4):449-461 [PubMed] Free Access to Full Article Related Publications
For many cancer types, the immune system plays an essential role in their development and growth. Based on these rather novel insights, immunotherapeutic strategies have been developed. In the past decade, immune checkpoint blockade has demonstrated a major breakthrough in cancer treatment and has currently been approved for the treatment of multiple tumor types. Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TIL) or gene-modified T cells expressing novel T cell receptors (TCR) or chimeric antigen receptors (CAR) is another strategy to modify the immune system to recognize tumor cells and thus carry out an anti-tumor effector function. These treatments have shown promising results in various tumor types, and multiple clinical trials are being conducted worldwide to further optimize this treatment modality. Most successful results were obtained in hematological malignancies with the use of CD19-directed CAR T cell therapy and already led to the commercial approval by the FDA. This review provides an overview of the developments in ACT, the associated toxicity, and the future potential of ACT in cancer treatment.

Tanaka K, Kanesaka Y, Takami M, et al.
Role of leukotriene B4 12-hydroxydehydrogenase in α-galactosylceramide-pulsed dendritic cell therapy for non-small cell lung cancer.
Biochem Biophys Res Commun. 2018; 506(1):27-32 [PubMed] Related Publications
Invariant natural killer T (iNKT) cells exhibit potent antitumor effects upon activation by recognizing a specific glycolipid antigen. We previously performed phase I-II clinical studies to utilize iNKT cells using α-galactosylceramide-pulsed dendritic cells and identified leukotriene B4 12-hydroxydehydrogenase (LTB4DH) as a biomarker highly expressed in T cells derived from non-small cell lung cancer (NSCLC) patients who showed prolonged survival in respond to the iNKT cell immunotherapy. Because LTB4DH expression correlated with prolonged survival of NSCLC patients, we considered LTB4DH to play a role in iNKT cell immunotherapy. We herein demonstrate that the overexpression of LTB4DH in CD4

Sjöberg E, Frödin M, Lövrot J, et al.
A minority-group of renal cell cancer patients with high infiltration of CD20+B-cells is associated with poor prognosis.
Br J Cancer. 2018; 119(7):840-846 [PubMed] Article available free on PMC after 02/10/2019 Related Publications
BACKGROUND: The role of B-lymphocytes in solid tumours is unclear. Tumour biology studies have implied both anti- and pro-tumoural effects and prognostic studies have mainly linked B-cells to increased survival. This study aimed to analyse the clinical relevance of B-lymphocytes in renal cell cancer (RCC), where information on the prognostic impact is lacking.
METHODS: Following immunohistochemistry (IHC) stainings with a CD20 antibody, density of CD20+ B-cells was quantified in an RCC discovery- and validation cohort. Associations of B-cell infiltration, determined by CD20 expression or a B-cell gene-signature, and survival was also analysed in 14 publicly available gene expression datasets of cancer, including the kidney clear cell carcinoma (KIRC) dataset.
RESULTS: IHC analyses of the discovery cohort identified a previously unrecognised subgroup of RCC patients with high infiltration of CD20+ B-cells. The B-cell-high subgroup displayed significantly shorter survival according to uni- and multi-variable analyses. The association between poor prognosis and high density of CD20+ B-cells was confirmed in the validation cohort. Analyses of the KIRC gene expression dataset using the B-cell signature confirmed findings from IHC analyses. Analyses of other gene expression datasets, representing 13 different tumour types, indicated that the poor survival-association of B-cells occurred selectively in RCC.
CONCLUSION: This exploratory study identifies a previously unrecognised poor-prognosis subset of RCC with high density of CD20-defined B-cells.

Ruella M, Xu J, Barrett DM, et al.
Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell.
Nat Med. 2018; 24(10):1499-1503 [PubMed] Article available free on PMC after 02/10/2019 Related Publications
We report a patient relapsing 9 months after CD19-targeted CAR T cell (CTL019) infusion with CD19

Mollanoori H, Shahraki H, Rahmati Y, Teimourian S
CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment.
Hum Immunol. 2018; 79(12):876-882 [PubMed] Related Publications
Clustered regularly interspaced short palindromic repeats/CRISPR associated nuclease9 (CRISPR/Cas9) technology, an acquired immune system in bacteria and archaea, has provided a new tool for accurately genome editing. Using only a single nuclease protein in complex with 2 short RNA as a site-specific endonuclease made it a simple and flexible genome editing tool to target nearly any genomic locus. Due to recent developments in therapeutic engineered T cell and effective responses of CD19-directed chimeric antigen receptor T cells (CART19) in patients with B-cell leukemia and lymphoma, adoptive T cell immunotherapy, particularly CAR-T cell therapy became a rapidly growing field in cancer therapy and recently Kymriah and Yescarta (CD19-directed CAR-T cells) were approved by FDA. Therefore, the combination of CRISPR/Cas9 technology as a genome engineering tool and CAR-T cell therapy (engineered T cells that express chimeric antigen receptors) may lead to further improvement in efficiency and safety of CAR-T cells. This article reviews mechanism and therapeutic application of CRISPR/Cas9 technology, accuracy of this technology, cancer immunotherapy by CAR T cells, the application of CRISPR technology for the production of universal CAR T cells, improving their antitumor efficacy, and biotech companies that invested in CRISPR technology for CAR-T cell therapy.

Jiang Q, Fu Q, Chang Y, et al.
CD19
Cancer Immunol Immunother. 2019; 68(1):45-56 [PubMed] Related Publications
PURPOSE: CD19
EXPERIMENTAL DESIGN: We assessed TIB by immunohistochemical staining of CD19 in 246 MIBC patients from Zhongshan Hospital and Shanghai Cancer Center. We evaluated the survival benefit of platinum-based chemotherapy according to CD19
RESULTS: CD19
CONCLUSION: CD19

Zhong Q, Zhu YM, Zheng LL, et al.
Chimeric Antigen Receptor-T Cells with 4-1BB Co-Stimulatory Domain Present a Superior Treatment Outcome than Those with CD28 Domain Based on Bioinformatics.
Acta Haematol. 2018; 140(3):131-140 [PubMed] Related Publications
BACKGROUND: The second-generation CD19-chimeric antigen receptor (CAR)-T co-stimulatory domain that is commonly used in clinical practice is CD28 or 4-1BB. Previous studies have shown that the persistence of CAR-T in the 4-1BB co-stimulatory domain appears to be longer.
METHODS: The expression profile data of GSE65856 were obtained from GEO database. After data preprocessing, the differentially expressed genes (DEGs) between the mock CAR versus CD19-28z CAR T cells and mock CAR versus CD19-BBz CAR T cells were identified using the limma package. Subsequently, functional enrichment analysis of DEGs was performed using the DAVID tool. Then, the protein-protein international (PPI) network of these DEGs was visualized by Cytoscape, and the miRNA-target gene-disease regulatory networks were predicted using Webgestal.
RESULTS: A total of 18 common DEGs, 6 CD19-28z specific DEGs and 206 CD19-BBz specific DEGs were identified. Among CD19-28z specific DEGs, down-regulated PAX5 might be an important node in the PPI network and could be targeted by miR-496. In CD19-BBz group, JUN was a hub node in the PPI network and involved in the regulations of miR520D - early growth response gene 3 (EGR3)-JUN and mi-R489-AT-rich interaction domain 5A (ARID5A)-JUN networks.
CONCLUSION: The 4-1BB co-stimulatory domain might play in important role in the treatment of CAR-T via miR-520D-EGR3-JUN and miR489-ARID5A-JUN regulation network, while CD28 had a negative effect on CAR-T treatment.

Balatti V, Tomasello L, Rassenti LZ, et al.
Blood. 2018; 132(20):2179-2182 [PubMed] Article available free on PMC after 15/11/2019 Related Publications
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia. It is characterized by the accumulation of CD19

Cohen AD
CAR T Cells and Other Cellular Therapies for Multiple Myeloma: 2018 Update.
Am Soc Clin Oncol Educ Book. 2018; 38:e6-e15 [PubMed] Related Publications
Cellular therapies are a rapidly evolving approach to myeloma treatment, which bring a unique mechanism of action with the potential to overcome drug resistance and induce long-term remissions. Two primary approaches are being studied: non-gene-modified strategies, which rely on the endogenous anti-myeloma T-cell repertoire, and gene-modified strategies, which introduce a new T-cell receptor (TCR) or a chimeric antigen receptor (CAR) to confer novel antigen specificity. CAR T cells show the greatest activity to date. Multiple antigen targets, including B-cell maturation antigen (BCMA), CD19, CD38, CD138, and SLAMF7, are being explored for myeloma, and BCMA has emerged as the most promising. Preliminary data from four phase I studies of BCMA CAR T cells, each using a different CAR construct, that involved 90 evaluable patients with relapsed/refractory disease have been reported. These data show response rates of 60% to 100%, including minimal residual disease (MRD)-negative complete remissions, at effective doses (> 10

Xu H, Yao F
Microarray-Based Gene Expression Analysis Identifies Potential Diagnostic and Prognostic Biomarkers for Waldenström Macroglobulinemia.
Acta Haematol. 2018; 140(2):87-96 [PubMed] Related Publications
Waldenström macroglobulinemia (WM), also known as lymphoplasmacytic lymphoma, is rare but a clinicopathologically distinct B-cell malignancy. This study assessed differentially expressed genes (DEGs) to identify potential WM biomarkers and uncover the underlying the molecular mechanisms of WM progression using gene expression profiles from the Gene Expression Omnibus database. DEGs were identified using the LIMMA package and their potential functions were then analyzed by using the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and the protein-protein interaction (PPI) network analysis by using the Search Tool for the Retrieval of Interacting Genes/Proteins database. Data showed that among 1,756 DEGs, 926 were upregulated and 830 were downregulated by comparing WM BM CD19+ with normal PB CD19+ B cell samples, whereas 241 DEGs (95 upregulated and 146 downregulated) were identified by comparing WM BM CD138+ with normal BM CD138+ plasma cell samples. The DEGs were enriched in different GO terms and pathways, including the apoptotic process, cell cycle arrest, immune response, cell adhesion, mitogen-activated protein kinase signaling pathway, toll-like receptor signaling pathway, and the gonadotropin-releasing hormone signaling pathway. Hub nodes in the PPI network included CDK1, JUN, CREBBP, EP300, CAD, CDK2, and MAPK14. Bioinformatics analysis of the GSE9656 dataset identified 7 hub genes that might play an important role in WM development and progression. Some of the candidate genes and pathways may serve as promising therapeutic targets for WM.

Spinner MA, Varma G, Advani RH
Novel Approaches in Waldenström Macroglobulinemia.
Hematol Oncol Clin North Am. 2018; 32(5):875-890 [PubMed] Related Publications
Recent advances in the understanding of Waldenström macroglobulinemia (WM) biology have paved the way for development of a plethora of novel therapeutic strategies. The success of ibrutinib in WM has shifted treatment paradigms away from conventional chemoimmunotherapy approaches. Recognition of high-risk genomic subgroups as well as mechanisms of acquired resistance to ibrutinib have led to targeting of additional pathways. In this article, the authors review ongoing and emerging trials of novel therapies in WM that target the B-cell receptor pathway beyond ibrutinib, toll-like receptor pathway, chemokine signaling, apoptotic pathway, chromatin remodeling, protein transport, the immune microenvironment, and CD19-directed immunotherapy.

Morgan MA, Schambach A
Chimeric Antigen Receptor T Cells: Extending Translation from Liquid to Solid Tumors.
Hum Gene Ther. 2018; 29(10):1083-1097 [PubMed] Related Publications
Successful translation of chimeric antigen receptor (CAR) T cells designed to target and eradicate CD19+ lymphomas has emboldened scientists and physicians worldwide to explore the possibility of applying CAR T-cell technology to other tumor entities, including solid tumors. Next-generation strategies such as fourth-generation CARs (CAR T cells redirected for universal cytokine killing, also known as TRUCKs) designed to deliver immunomodulatory cytokines to the tumor microenvironment, dual CAR designs to improve tumor control, inclusion of suicide genes as safety switches, and precision genome editing are currently being investigated. One major ongoing goal is to determine how best to generate CAR T cells that modulate the tumor microenvironment, overcome tumor survival mechanisms, and thus allow broader applicability as universal allogeneic T-cell therapeutics. Development of state-of-the-art and beyond viral vector systems to deliver designer CARs coupled with targeted genome editing is expected to generate more effective off-the-shelf CAR T cells with activity against a greater number of cancer types and importantly solid tumors.

John S, Chen H, Deng M, et al.
A Novel Anti-LILRB4 CAR-T Cell for the Treatment of Monocytic AML.
Mol Ther. 2018; 26(10):2487-2495 [PubMed] Article available free on PMC after 03/10/2019 Related Publications
To effectively improve treatment for acute myeloid leukemia (AML), new molecular targets and therapeutic approaches need to be identified. Chimeric antigen receptor (CAR)-modified T cells targeting tumor-associated antigens have shown promise in the treatment of some malignancies. However, CAR-T cell development for AML has been limited by lack of an antigen with high specificity for AML cells that is not present on normal hematopoietic stem cells, and thus will not result in myelotoxicity. Here we demonstrate that leukocyte immunoglobulin-like receptor-B4 (LILRB4) is a tumor-associated antigen highly expressed on monocytic AML cells. We generated a novel anti-LILRB4 CAR-T cell that displays high antigen affinity and specificity. These CAR-T cells display efficient effector function in vitro and in vivo against LILRB4

Palma M, Krstic A, Peña Perez L, et al.
Ibrutinib induces rapid down-regulation of inflammatory markers and altered transcription of chronic lymphocytic leukaemia-related genes in blood and lymph nodes.
Br J Haematol. 2018; 183(2):212-224 [PubMed] Related Publications
In chronic lymphocytic leukaemia (CLL) patients, treatment with the Bruton tyrosine kinase inhibitor ibrutinib induces a rapid shift of tumour cells from lymph nodes (LN) to peripheral blood (PB). Here, we characterized in depth the dynamics of ibrutinib-induced inflammatory, transcriptional and cellular changes in different compartments immediately after treatment initiation in seven relapsed/refractory CLL patients. Serial PB and LN samples were taken before start and during the first 29 days of treatment. Changes in plasma inflammation-related biomarkers, CLL cell RNA expression, B-cell activation and migration markers expression, and PB mononuclear cell populations were assessed. A significant reduction of 10 plasma inflammation markers, the majority of which were chemokines and not CLL-derived, was observed within hours, and was paralleled by very early increase of CD19

Nagant C, Casula D, Janssens A, et al.
Easy discrimination of hematogones from lymphoblasts in B-cell progenitor acute lymphoblastic leukemia patients using CD81/CD58 expression ratio.
Int J Lab Hematol. 2018; 40(6):734-739 [PubMed] Related Publications
INTRODUCTION: The discrimination of leukemia lymphoblasts (LB) in diagnosis and follow-up of B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) by multiparameter flow cytometry (MFC) may be difficult due to the presence of hematogones (HG). The aim of this study was to compare lymphoblasts of BCP-ALL and HG for the expression of the most discriminating antigens.
METHODS: A total of 82 bone marrow samples (39 BCP-ALL and 43 patients with HG) were analyzed using MFC. Mean fluorescence intensity (MFI) was measured for ten markers commonly used in hematology laboratories: CD45, CD19, CD10, CD34, CD38, CD20, CD22, CD58, CD81, and CD123. Statistical comparison of the MFI between LB and HG was performed. The presence on LB of aberrant expression of myeloid and/or T-cell markers was also investigated.
RESULTS: Qualitative pattern expression of antigens showed overexpression on LB of CD58, CD22, CD34, CD10 and underexpression of CD81, CD45, CD38 when compared to HG. Expression of CD123 was positive in 34% of BCP-ALL LB and always absent on HG. Aberrant antigen expression (myeloid and/or T-cell marker) including CD123 was observed in 58% of BCP-ALL patients. The use of a MFI antigen ratio of the most discriminating markers (CD81/CD58) (analysis of variance, P < 0.005) increased the distinction of LB versus HG with a high specificity and sensitivity as demonstrated by the use of ROC curve analysis (AUC of CD81/CD58: 0.995).
CONCLUSION: We demonstrate in this study that routine use of the MFI antigen ratio (CD81/CD58) in addition to the MFC evaluation using WHO classical criteria appears to be an efficient approach to discriminate LB from HG.

Ngai H, Tian G, Courtney AN, et al.
IL-21 Selectively Protects CD62L
J Immunol. 2018; 201(7):2141-2153 [PubMed] Article available free on PMC after 01/10/2019 Related Publications
T cells expressing CD19-specific chimeric Ag receptors (CARs) produce high remission rates in B cell lymphoma, but frequent disease recurrence and challenges in generating sufficient numbers of autologous CAR T cells necessitate the development of alternative therapeutic effectors. Vα24-invariant NKTs have intrinsic antitumor properties and are not alloreactive, allowing for off-the-shelf use of CAR-NKTs from healthy donors. We recently reported that CD62L

Mahadeo KM, Khazal SJ, Abdel-Azim H, et al.
Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy.
Nat Rev Clin Oncol. 2019; 16(1):45-63 [PubMed] Related Publications
In 2017, an autologous chimeric antigen receptor (CAR) T cell therapy indicated for children and young adults with relapsed and/or refractory CD19

Ghorashian S, Amrolia P, Veys P
Open access? Widening access to chimeric antigen receptor (CAR) therapy for ALL.
Exp Hematol. 2018; 66:5-16 [PubMed] Related Publications
T cells that are genetically modified to express chimeric antigen receptors (CARs) specific for CD19 show great promise for the treatment of relapsed/refractory acute lymphoblastic leukemia (ALL). The first U.S. Food and Drug Administration approval of a cellular cancer therapy in 2017, Novartis's CD19-targeting CAR T-cell product Kymriah™ within the context of relapsed/refractory pediatric ALL, followed rapidly by approval of Kite's Yescarta™ and, more recently, Kymriah™ for diffuse large B-cell indications in adults, highlights the pace of progress made in this field. In this review, we will consider the latest evidence from CAR T-cell therapy for B-lineage ALL. We discuss the barriers to CAR T-cell therapy for ALL patients and give a perspective on the strategy we have taken to date to widen access to CAR T-cell therapy for UK pediatric patients with high-risk ALL.

Stock S, Hoffmann JM, Schubert ML, et al.
Influence of Retronectin-Mediated T-Cell Activation on Expansion and Phenotype of CD19-Specific Chimeric Antigen Receptor T Cells.
Hum Gene Ther. 2018; 29(10):1167-1182 [PubMed] Related Publications
Enhanced in vivo expansion, long-term persistence of chimeric antigen receptor T (CART) cells, and efficient tumor eradication through these cells are linked to the proportion of less-differentiated cells in the CART cell product. Retronectin is well established as an adjuvant for improved retroviral transduction, while its property to enrich less-differentiated T cells is less known. In order to increase these subsets, this study investigated the effects of retronectin-mediated T-cell activation for CD19-specific CART cell production. Peripheral blood mononuclear cells of healthy donors and untreated chronic lymphocytic leukemia (CLL) patients without or with positive selection for CD3+ T cells were transduced with a CD19.CAR.CD28.CD137zeta third-generation retroviral vector. Activation of peripheral blood mononuclear cells was performed by CD3/CD28, CD3/CD28/retronectin, or CD3/retronectin. Interleukin-7 and -15 were supplemented to all cultures. Retronectin was used in all three activation protocols for retroviral transduction. Expansion was assessed by trypan blue staining. Viability, transduction efficiency, immune phenotype, and cytokine production were longitudinally analyzed by flow cytometry. Cytotoxic capacity of generated CART cells was evaluated using a classical chromium-51 release assay. Retronectin-mediated activation resulted in an enrichment of CD8+ cytotoxic CART cells and less-differentiated naïve-like T cells (CD45RA+CCR7+). Retronectin-activated CART cells showed increased cytotoxic activity. However, activation with retronectin decreased viability, expansion, transduction efficiency, and cytokine production, particularly of CLL patient-derived CART cells. Both retronectin-mediated activation protocols promoted a less-differentiated CART cell phenotype without comprising cytotoxic properties of healthy donor-derived CART cells. However, up-front retronectin resulted in reduced viability and expansion in CLL patients. This effect is probably attributed to the retronectin-mediated activation of B cells with prolonged CLL persistence. Consequently, CART cell expansion and generation failed. In summary, activation with retronectin should be performed with caution and may be limited to patients without a higher percentage of tumor cells in the peripheral blood.

Komura T, Yano M, Miyake A, et al.
Immune Condition of Colorectal Cancer Patients Featured by Serum Chemokines and Gene Expressions of CD4+ Cells in Blood.
Can J Gastroenterol Hepatol. 2018; 2018:7436205 [PubMed] Article available free on PMC after 01/10/2019 Related Publications
Background: Colorectal cancer (CRC), the most common malignancy worldwide, causes inflammation. We explored the inflammatory pathophysiology of CRC by assessing the peripheral blood parameters.
Methods: The differences in gene expression profiles of whole blood cells and cell subpopulations between CRC patients and healthy controls were analyzed using DNA microarray. Serum cytokine/chemokine concentrations in CRC patients and healthy controls were measured via multiplex detection immunoassays. In addition, we explored correlations between the expression levels of certain genes of peripheral CD4+ cells and serum chemokine concentrations.
Results: The gene expression profiles of peripheral CD4+ cells of CRC patients differed from those of healthy controls, but this was not true of CD8+ cells, CD14+ cells, CD15+ cells, or CD19+ cells. Serum IL-8 and eotaxin-1 levels were significantly elevated in CRC patients, and the levels substantially correlated with the expression levels of certain genes of CD4+ cells. Interestingly, the relationships between gene expression levels in peripheral CD4+ cells and serum IL-8 and eotaxin-1 levels resembled those of monocytes/macrophages, not T cells.
Conclusions: Serum IL-8 and eotaxin-1 concentrations increased and were associated with changes in the gene expression of peripheral CD4+ cells in CRC patients.

Svoboda J, Rheingold SR, Gill SI, et al.
Nonviral RNA chimeric antigen receptor-modified T cells in patients with Hodgkin lymphoma.
Blood. 2018; 132(10):1022-1026 [PubMed] Related Publications
Chimeric antigen receptor (CAR)-modified T cells are being investigated in many settings, including classical Hodgkin lymphoma (cHL). The unique biology of cHL, characterized by scant Hodgkin and Reed-Sternberg (HRS) cells within an immunosuppressive tumor microenvironment (TME), may pose challenges for cellular therapies directly targeting antigens expressed on HRS cells. We hypothesized that eradicating CD19

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CD19, Cancer Genetics Web: http://www.cancer-genetics.org/CD19.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999