ACCS

Gene Summary

Gene:ACCS; 1-aminocyclopropane-1-carboxylate synthase homolog (inactive)
Aliases: ACS, PHACS
Location:11p11.2
Summary:-
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:1-aminocyclopropane-1-carboxylate synthase-like protein 1
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • MicroRNAs
  • Translocation
  • RT-PCR
  • p53 Protein
  • Staging
  • Childhood Cancer
  • DNA Methylation
  • DNA Mutational Analysis
  • Proto-Oncogene Proteins c-kit
  • Immunohistochemistry
  • Chromosome 11
  • Biomarkers, Tumor
  • Cancer DNA
  • Adenoma
  • Mutation
  • Gene Expression Profiling
  • Promoter Regions
  • Phenotype
  • Cancer Gene Expression Regulation
  • Carcinoma, Acinar Cell
  • Adolescents
  • Toll-Like Receptor 4
  • Case-Control Studies
  • Adrenocortical Carcinoma
  • Adenoid Cystic Carcinoma
  • Salivary Glands
  • Angiogenesis
  • Messenger RNA
  • Signal Transduction
  • Oncogene Fusion Proteins
  • Telomere
  • Adrenocortical Cancer
  • Genetic Predisposition
  • Up-Regulation
  • Loss of Heterozygosity
  • Adrenocortical Adenoma
  • Pancreatic Cancer
  • Adrenal Cortex
  • FISH
  • Oligonucleotide Array Sequence Analysis
  • Sequence Deletion
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ACCS (cancer-related)

Gao Y, Jia L, Wang Q, et al.
pH/Redox Dual-Responsive Polyplex with Effective Endosomal Escape for Codelivery of siRNA and Doxorubicin against Drug-Resistant Cancer Cells.
ACS Appl Mater Interfaces. 2019; 11(18):16296-16310 [PubMed] Related Publications
The enhanced endo-lysosomal sequestration still remains a big challenge in overcoming multidrug resistance (MDR). Herein, a dual-responsive polyplex with effective endo-lysosomal escape based on methoxypoly(ethylene glycol)-polylactide-polyhistidine-ss-oligoethylenimine (mPEG- b-PLA-PHis-ssOEI) was developed for codelivering MDR1 siRNA and doxorubicin (DOX). The polyplex showed good encapsulation of DOX and siRNA as well as triggered payload release in response to pH/redox stimuli because of the PHis protonation and the disulfide bond cleavage. The polyplex at an N/P ratio of 7 demonstrated a much higher payload delivery efficiency, MDR1 gene silence efficiency, cytotoxicity against MCF-7/ADR cell, and stronger MCF-7/ADR tumor growth inhibition than the polyplexes at higher N/P ratios. This was attributed to the stronger electrostatic attraction between siRNA and OEIs at higher N/P ratios that suppressed the release of MDR1 siRNA and OEIs, which played a dominant role in overcoming payload endo-lysosomal sequestration by the OEI-induced membrane permeabilization effect. Consequently, the polyplex with effective endo-lysosomal escape provides a rational approach for codelivery of siRNAs and chemotherapy agents for MDR reversal.

Cao M, Lu S, Wang N, et al.
Enzyme-Triggered Morphological Transition of Peptide Nanostructures for Tumor-Targeted Drug Delivery and Enhanced Cancer Therapy.
ACS Appl Mater Interfaces. 2019; 11(18):16357-16366 [PubMed] Related Publications
The use of smart drug carriers to realize cancer-targeted drug delivery is a promising method to improve the efficiency of chemotherapy and reduce its side effects. A surfactant-like peptide, Nap-FFGPLGLARKRK, was elaborately designed for cancer-targeted drug delivery based on an enzyme-triggered morphological transition of the self-assembled nanostructures. The peptide has three functional motifs: the aromatic motif of Nap-FF- to promote peptide self-assembly, the enzyme-cleavable segment of -GPLGLA- to introduce enzyme sensitivity, and the positively charged -RKRK- segment to balance the molecular amphiphilicity as well as to facilitate interaction with cell membranes. The peptide self-assembles into long fibrils with hydrophobic inner cores, which can encapsulate a high amount of anticancer drug doxorubicin (DOX). By having enzyme responsibility, these fibrils can be degraded into thinner ones by the cancer-overexpressed matrix metalloproteinase-7 (MMP7) at tumor sites and precipitate out to give sustained release of DOX, resulting in cancer-targeted drug delivery and selective cancer killing. In vivo antitumor experiments with mice confirm the high efficiency of such enzyme-responsive peptidic drug carriers in successfully suppressing the tumor growth and metastasis while greatly reducing the side effects. The study demonstrates the feasibility of using enzyme-sensitive peptide nanostructures for efficient and targeted drug delivery, which have great potential in biomedical cancer treatment.

Kundu B, Bastos ARF, Brancato V, et al.
Mechanical Property of Hydrogels and the Presence of Adipose Stem Cells in Tumor Stroma Affect Spheroid Formation in the 3D Osteosarcoma Model.
ACS Appl Mater Interfaces. 2019; 11(16):14548-14559 [PubMed] Related Publications
Osteosarcoma is one of the most common metastatic bone cancers, which results in significant morbidity and mortality. Unfolding of effectual therapeutic strategies against osteosarcoma is impeded because of the absence of adequate animal models, which can truly recapitulate disease biology of humans. Tissue engineering provides an opportunity to develop physiologically relevant, reproducible, and tunable in vitro platforms to investigate the interactions of osteosarcoma cells with its microenvironment. Adipose-derived stem cells (ASCs) are detected adjacent to osteosarcoma masses and are considered to have protumor effects. Hence, the present study focuses on investigating the role of reactive ASCs in formation of spheroids of osteosarcoma cells (Saos 2) within a three-dimensional (3D) niche, which is created using gellan gum (GG)-silk fibroin. By modifying the blending ratio of GG-silk, the optimum stiffness of the resultant hydrogels such as GG and GG75: S25 is obtained for cancer spheroid formation. This work indicates that the co-existence of cancer and stem cells can form a spheroid, the hallmark of cancer, only in particular microenvironment stiffness. The incorporation of fibrillar silk fibroin within the hydrophilic network of GG in GG75: S25 spongy-like hydrogels closely mimics the stiffness of commercially established cancer biomaterials (e.g., Matrigel, HyStem). The GG75: S25 hydrogel maintains the metabolically active construct for a longer time with elevated expression of osteopontin, osteocalcin, RUNX 2, and bone sialoprotein genes, the biomarkers of osteosarcoma, compared to GG. The GG75: S25 construct also exhibits intense alkaline phosphatase expression in immunohistochemistry compared to GG, indicating itspotentiality to serve as biomimetic niche to model osteosarcoma. Taken together, the GG-silk fibroin-blended spongy-like hydrogel is envisioned as an alternative low-cost platform for 3D cancer modeling.

Zhan Y, Ma W, Zhang Y, et al.
DNA-Based Nanomedicine with Targeting and Enhancement of Therapeutic Efficacy of Breast Cancer Cells.
ACS Appl Mater Interfaces. 2019; 11(17):15354-15365 [PubMed] Related Publications
Recently, a DNA tetrahedron has been reported to be a novel nanomedicine and promising drug vector because of its compactness, biocompatibility, biosafety, and editability. Here, we modified the DNA tetrahedron with a DNA aptamer (AS1411) as a DNA-based delivery system, which could bind to nucleolin for its cancer cell selectivity. Nucleolin is a specific biomarker protein overexpressed on membranes of malignant cancer cells and its deregulation is implicated in cell proliferation. The antimetabolite drug 5-fluorouracil (5-FU) is an extensively used anticancer agent; however, its major limitation is the lack of target specificity. Cyanine 5 (Cy5), a fluorescent probe, can be used to label DNA tetrahedron and enhance photostability with minimal effects on its basic functions. In this study, we additionally attached 5-FU to the DNA-based delivery system as a new tumor-targeting nanomedicine (AS1411-T-5-FU) to enhance the therapeutic efficacy and targeting of breast cancer. We examined the difference of the cellular uptake of AS1411-T-5-FU between breast cancer cells and normal breast cells and concluded that AS1411-T-5-FU had a better targeting ability to kill breast cancer cells than 5-FU. We further evaluated the expressions of cell apoptosis-related proteins and genes, which are associated with the mitochondrial apoptotic pathway. Ultimately, our results suggest the potential of DNA tetrahedron in cancer therapies, and we develop a novel approach to endow 5-FU with targeting property.

Dong J, Zhang RY, Sun N, et al.
Bio-Inspired NanoVilli Chips for Enhanced Capture of Tumor-Derived Extracellular Vesicles: Toward Non-Invasive Detection of Gene Alterations in Non-Small Cell Lung Cancer.
ACS Appl Mater Interfaces. 2019; 11(15):13973-13983 [PubMed] Article available free on PMC after 17/10/2019 Related Publications
Tumor-derived extracellular vesicles (EVs) present in bodily fluids are emerging liquid biopsy markers for non-invasive cancer diagnosis and treatment monitoring. Because the majority of EVs in circulation are not of tumor origin, it is critical to develop new platforms capable of enriching tumor-derived EVs from the blood. Herein, we introduce a biostructure-inspired NanoVilli Chip, capable of highly efficient and reproducible immunoaffinity capture of tumor-derived EVs from blood plasma samples. Anti-EpCAM-grafted silicon nanowire arrays were engineered to mimic the distinctive structures of intestinal microvilli, dramatically increasing surface area and enhancing tumor-derived EV capture. RNA in the captured EVs can be recovered for downstream molecular analyses by reverse transcription Droplet Digital PCR. We demonstrate that this assay can be applied to monitor the dynamic changes of ROS1 rearrangements and epidermal growth factor receptor T790M mutations that predict treatment responses and disease progression in non-small cell lung cancer patients.

Timin AS, Peltek OO, Zyuzin MV, et al.
Safe and Effective Delivery of Antitumor Drug Using Mesenchymal Stem Cells Impregnated with Submicron Carriers.
ACS Appl Mater Interfaces. 2019; 11(14):13091-13104 [PubMed] Related Publications
An important area in modern malignant tumor therapy is the optimization of antitumor drugs pharmacokinetics. The use of some antitumor drugs is limited in clinical practice due to their high toxicity. Therefore, the strategy for optimizing the drug pharmacokinetics focuses on the generation of high local concentrations of these drugs in the tumor area with minimal systemic and tissue-specific toxicity. This can be achieved by encapsulation of highly toxic antitumor drug (vincristine (VCR) that is 20-50 times more toxic than widely used the antitumor drug doxorubicin) into nano- and microcarriers with their further association into therapeutically relevant cells that possess the ability to migrate to sites of tumor. Here, we fundamentally examine the effect of drug carrier size on the behavior of human mesenchymal stem cells (hMSCs), including internalization efficiency, cytotoxicity, cell movement, to optimize the conditions for the development of carrier-hMSCs drug delivery platform. Using the malignant tumors derived from patients, we evaluated the capability of hMSCs associated with VCR-loaded carriers to target tumors using a three-dimensional spheroid model in collagen gel. Compared to free VCR, the developed hMSC-based drug delivery platform showed enhanced antitumor activity regarding those tumors that express CXCL12 (stromal cell-derived factor-1 (SDF-1)) gene, inducing directed migration of hMSCs via CXCL12 (SDF-1)/CXCR4 pathway. These results show that the combination of encapsulated antitumor drugs and hMSCs, which possess the properties of active migration into tumors, is therapeutically beneficial and demonstrated high efficiency and low systematic toxicity, revealing novel strategies for chemotherapy in the future.

Juneja R, Lyles Z, Vadarevu H, et al.
Multimodal Polysilsesquioxane Nanoparticles for Combinatorial Therapy and Gene Delivery in Triple-Negative Breast Cancer.
ACS Appl Mater Interfaces. 2019; 11(13):12308-12320 [PubMed] Related Publications
Multifunctional hybrid nanoparticles are being developed to carry a wide variety of therapeutic and imaging agents for multiple biomedical applications. Polysilsesquioxane (PSilQ) nanoparticles are a promising hybrid platform with numerous advantages to be used as a delivery system. In this report, we demonstrate the ability of a stimuli-responsive PSilQ-based platform to transport and deliver simultaneously protoporphyrin IX, curcumin, and RNA interference inducers inside human cells. This multimodal delivery system shows a synergistic performance for the combined phototherapy and chemotherapy of triple-negative breast cancer and can be used for efficient transfection of therapeutic nucleic acids. The current work represents the first report of using the PSilQ platform for the combined phototherapy and chemotherapy and gene delivery.

Ning Q, Liu YF, Ye PJ, et al.
Delivery of Liver-Specific miRNA-122 Using a Targeted Macromolecular Prodrug toward Synergistic Therapy for Hepatocellular Carcinoma.
ACS Appl Mater Interfaces. 2019; 11(11):10578-10588 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) poses a great threat to human health. The elegant combination of gene therapy and chemotherapy by nanocarriers has been repeatedly highlighted to realize enhanced therapeutic efficacy relative to monotreatment. However, the leading strategy to achieve the efficient codelivery of the gene and drug remains the electrostatic condensation with the nucleic acid and the hydrophobic encapsulation of drug molecules by the nanocarriers, which suffers substantially from premature drug leakage during circulation and severe off-target-associated side effects. To address these issues, we reported in this study the codelivery of liver-specific miRNA-122 and anti-cancer drug 5-fluorouracil (5-Fu) using a macromolecular prodrug approach, that is, electrostatic condensation with miRNA-122 using galactosylated-chitosan-5-fluorouracil (GC-FU). The delivery efficacy was evaluated comprehensively in vitro and in vivo. Specifically, the biocompatibility of GC-FU/miR-122 nanoparticles (NPs) was assessed by hemolysis activity analysis, BSA adsorption test, and cell viability assay in both normal liver cells (L02 cells) and endothelial cells. The resulting codelivery systems showed enhanced blood and salt stability, efficient proliferation inhibition of HCC cells, and further induction apoptosis of HCC cells, as well as downregulated expression of ADAM17 and Bcl-2. The strategy developed herein is thus a highly promising platform for an effective codelivery of miRNA-122 and 5-Fu with facile fabrication and great potential for the clinical translation toward HCC synergistic therapy.

Song J, Zhang Y, Dai Y, et al.
Polyelectrolyte-Mediated Nontoxic AgGa
ACS Appl Mater Interfaces. 2019; 11(10):9884-9892 [PubMed] Related Publications
Cancer stem cells, which are a population of cancer cells sharing common properties with normal stem cells, have strong self-renewal ability and multi-lineage differentiation potential to trigger tumor proliferation, metastases, and recurrence. From this, targeted therapy for cancer stem cells may be one of the most promising strategies for comprehensive treatment of tumors in the future. We design a facile approach to establish the colon cancer stem cells-selective fluorescent probe based on the low-density lipoprotein (LDL) and the novel AgGa

Cao Y, Huang HY, Chen LQ, et al.
Enhanced Lysosomal Escape of pH-Responsive Polyethylenimine-Betaine Functionalized Carbon Nanotube for the Codelivery of Survivin Small Interfering RNA and Doxorubicin.
ACS Appl Mater Interfaces. 2019; 11(10):9763-9776 [PubMed] Related Publications
The combination of gene therapy and chemotherapy has recently received considerable attention for cancer treatment. However, low transfection efficiency and poor endosomal escape of genes from nanocarriers strongly limit the success of the clinical use of small interfering RNA (siRNA). In this study, a novel pH-responsive, surface-modified single-walled carbon nanotube (SWCNT) was designed for the codelivery of doxorubicin (DOX) and survivin siRNA. Polyethylenimine (PEI) was covalently conjugated with betaine, and the resulting PEI-betaine (PB) was further synthesized with the oxidized SWCNT to form SWCNT-PB (SPB), which exhibits an excellent pH-responsive lysosomal escape of siRNA. SPB was modified with the targeting and penetrating peptide BR2 (SPBB), thereby achieving considerably higher uptake of siRNA than SWCNT-PEI (SP) or SPB. Furthermore, SPBB-siRNA presented substantially lower survivin expression and higher apoptotic index than Lipofectamine 2000. DOX and survivin siRNA were adsorbed onto SPB to form DOX-SPBB-siRNA, and siRNA/DOX was released into the cytoplasm and nuclei of adenocarcinomic human alveolar basal epithelial (A549) cells without lysosomal retention. Compared with SPBB-siRNA or DOX-SPBB treatment alone, DOX-SPBB-siRNA significantly reduced tumor volume in A549 cell-bearing nude mice, demonstrating the synergistic effects of DOX and survivin siRNA. Pathological analysis also indicated the potential therapeutic effects of DOX-SPBB-siRNA on tumors without distinct damages to normal tissues. In conclusion, the novel functionalized SWCNT loaded with DOX and survivin siRNA was successfully synthesized, and the nanocomplex exhibited effective antitumor effects both in vitro and in vivo, thereby providing an alternative strategy for the codelivery of antitumor drugs and genes.

Meng L, Ma W, Lin S, et al.
Tetrahedral DNA Nanostructure-Delivered DNAzyme for Gene Silencing to Suppress Cell Growth.
ACS Appl Mater Interfaces. 2019; 11(7):6850-6857 [PubMed] Related Publications
DNAzymes are synthetic oligonucleotides that are capable of cleavaging target mRNA to exert gene-silencing activity and are considered as promising therapeutic agents. Dz13 is a DNAzyme that cleaves the mRNA of c-Jun and suppresses the growth of squamous cell carcinomas. However, DNAzymes exhibit low cellular uptake efficacy and require a suitable drug delivery system. In this study, we directly added the Dz13 sequence to the 5'-end of single-stranded DNA to form modified tetrahedral DNA nanostructures (TDN-Dz13). The TDNs were used to deliver the single-stranded DNAzyme Dz13 into cells. Dz13 delivered by the TDNs showed high cellular uptake efficiency and still maintained intracellular gene-silencing activity to cleave the target c-Jun mRNA, which reduced cell proliferation. This study may help find a convenient approach for the delivery of DNAzymes to regulate target genes.

Zhou X, Jia J, Luo Z, et al.
Remote Induction of Cell Autophagy by 2D MoS
ACS Appl Mater Interfaces. 2019; 11(7):6829-6839 [PubMed] Related Publications
The ability of nanoparticles to induce adverse consequences in human cells relies on their physical shapes. In this aspect, how two-dimensional nanoparticles differ from three-dimensional nanoparticles is not well-known. To elucidate this difference, combined experimental and theoretical approaches are employed to compare MoS

Biswas A, Chakraborty K, Dutta C, et al.
Engineered Histidine-Enriched Facial Lipopeptides for Enhanced Intracellular Delivery of Functional siRNA to Triple Negative Breast Cancer Cells.
ACS Appl Mater Interfaces. 2019; 11(5):4719-4736 [PubMed] Related Publications
Cytosolic delivery of functional siRNA remains the major challenge to develop siRNA-based therapeutics. Designing clinically safe and effective siRNA transporter to deliver functional siRNA across the plasma and endosomal membrane remains a key hurdle. With the aim of improving endosomal release, we have designed cyclic and linear peptide-based transporters having an Arg-

Wang J, He X, Shen S, et al.
ROS-Sensitive Cross-Linked Polyethylenimine for Red-Light-Activated siRNA Therapy.
ACS Appl Mater Interfaces. 2019; 11(2):1855-1863 [PubMed] Related Publications
The extremely inefficient endosomal escape and intracellular release are the central barriers for effective nanocarrier-mediated RNA interference (RNAi) therapeutics. Accelerating endosomal escape and triggering intracellular release with red or near-infrared light are of particular interest due to its spatiotemporal controllability, great tissue penetration, and minimal phototoxicity. As a proof-of-concept, we explored an innovative siRNA delivery system,

Tarokhian H, Rahimi H, Mosavat A, et al.
HTLV-1-host interactions on the development of adult T cell leukemia/lymphoma: virus and host gene expressions.
BMC Cancer. 2018; 18(1):1287 [PubMed] Article available free on PMC after 17/10/2019 Related Publications
BACKGROUND: Adult T-cell leukemia/lymphoma (ATLL) is a lymphoproliferative disorder of HTLV-1-host interactions in infected TCD4+ cells. In this study, the HTLV-1 proviral load (PVL) and HBZ as viral elements and AKT1, BAD, FOXP3, RORγt and IFNλ3 as the host factors were investigated.
METHODS: The study was conducted in ATLLs, HTLV-1-associated myelopathy/tropical spastic paraparesis patients (HAM/TSPs) and HTLV-1-asympthomatic carriers (ACs). The DNA and mRNA from peripheral blood mononuclear cells were extracted for gene expression assessments via qRT-PCR, TaqMan assay, and then confirmed by western blotting.
RESULTS: As it was expected, the HTLV-1-PVL were higher in ATLLs than ACs (P = 0.002) and HAM/TSP (P = 0.041). The HBZ expression in ATLL (101.76 ± 61.3) was radically higher than in ACs (0.12 ± 0.05) and HAM/TSP (0.01 ± 0.1) (P = 0.001). Furthermore, the AKT1 expression in ATLLs (13.52 ± 4.78) was higher than ACs (1.17 ± 0.27) (P = 0.05) and HAM/TSPs (0.72 ± 0.49) (P = 0.008). However, BAD expression in ATLL was slightly higher than ACs and HAM/TSPs and not significant. The FOXP3 in ATLLs (41.02 ± 24.2) was more than ACs (1.44 ± 1) (P = 0.007) and HAM/TSP (0.45 ± 0.15) (P = 0.01). However, RORγt in ATLLs (27.43 ± 14.8) was higher than ACs (1.05 ± 0.32) (P = 0.02) but not HAM/TSPs. Finally, the IFNλ3 expression between ATLLs (31.92 ± 26.02) and ACs (1.46 ± 0.63) (P = 0.01) and ACs and HAM/TSPs (680.62 ± 674.6) (P = 0.02) were statistically different, but not between ATLLs and HAM/TSPs.
CONCLUSIONS: The present and our previous study demonstrated that HTLV-1-PVL and HBZ and host AKT1 and Rad 51 are novel candidates for molecular targeting therapy of ATLL. However, high level of RORγt may inhibit Th1 response and complicated in ATLL progressions.

Yu M, Li X, Huang X, et al.
New Cell-Penetrating Peptide (KRP) with Multiple Physicochemical Properties Endows Doxorubicin with Tumor Targeting and Improves Its Therapeutic Index.
ACS Appl Mater Interfaces. 2019; 11(2):2448-2458 [PubMed] Related Publications
Cell-penetrating peptides (CPPs) are considered as promising drug carriers by virtue of their potent cell-penetrating capacity. However, lack of targetability still represents a bottleneck for their systemic administration. Here, we synthesized a lysine-rich CPP named KRP and developed a tumor-targeted drug delivery system (DDS) by linking KRP and doxorubicin (DOX) with stable covalent bonds (thioether bond and amide bond). Through in vitro and in vivo tests, we confirmed that the multiple physicochemical properties of KRP endow KRP-DOX with multiple synergistic functions, including good biocompatibility and biodistribution, selective accumulation in tumor tissues, inclination to remain in tumor tissues and be internalized by tumor cells; stable covalent bonds prevent free DOX release from KRP-DOX in blood stream, shield normal tissues from the toxic effect of DOX, and lead to the majority of DOX delivery into tumor cells by KRP; lysosome escape of KRP-DOX ensures its tumor-killing effect. In addition, the simple chemical composition and modification reduce the risk of immunogenicity and metabolite toxicity. Our study provides a simple, safe, and efficient platform for tumor-targeted DDS.

Hou L, Zhang Y, Yang X, et al.
Intracellular NO-Generator Based on Enzyme Trigger for Localized Tumor-Cytoplasm Rapid Drug Release and Synergetic Cancer Therapy.
ACS Appl Mater Interfaces. 2019; 11(1):255-268 [PubMed] Related Publications
Nitric oxide (NO) is an important biological messenger implicated in tumor therapy. However, current NO release systems suffer from some disadvantages, such as hydrolysis during blood circulation, poor specificity, and robust irradiation for stimuli. Accordingly, we constructed an intracellular enzyme-triggered NO-generator to achieve tumor cytoplasm-specific disruption and localized rapid drug release. Diethylamine NONOate (DEA/NO) was used as a NO donor and conjugated with hyaluronic acid (HA) to form self-assembly micelle (HA-DNB-DEA/NO), and encapsulate chemotherapeutic agent (doxorubicin (DOX)) into its hydrophobic core (DOX@HA-DNB-DEA/NO). After HA receptor mediated internalization into tumor cells, HA shell would undergo digestion into small conjugated pieces by hyaluronidase. Meanwhile, DOX@HA-DNB-DEA/NO also responded to the intratumoral overexpressed glutathion and glutathione S-transferase π, leading to the intracellular NO production and controlled DOX rapid release. In vitro and in vivo results proved the enzyme-dependent and enhanced targeting delivery profile, and demonstrated that NO and DOX could colocate in specific tumor site, which provided a precondition for exerting their synergistic efficacy. Moreover, expression of p53 protein was upregulated in tumor tissue after treatment, indicating that NO induced cell apoptosis mediated by tumor suppressor gene p53. Overall, this intelligent drug loaded NO-generator might perform as an enhancer to realize better clinical outcomes.

Gong N, Teng X, Li J, Liang XJ
Antisense Oligonucleotide-Conjugated Nanostructure-Targeting lncRNA MALAT1 Inhibits Cancer Metastasis.
ACS Appl Mater Interfaces. 2019; 11(1):37-42 [PubMed] Related Publications
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long noncoding RNA (lncRNA) located in the cell nucleus, is a critical regulator of tumor cell migration. Antisense oligonucleotides (ASOs), which can downregulate the expression level of specific RNAs, have been used in clinical for disease treatment. Herein, we constructed MALAT1-specific ASO and nucleus-targeting TAT peptide cofunctionalized Au nanoparticles, namely, ASO-Au-TAT NPs, which stabilized the fragile ASOs, enhanced nuclear internalization, and exhibited good biocompatibility. After treatment with the ASO-Au-TAT NPs, A549 lung cancer cells showed a greatly reduced MALAT1 expression level and decreased migration ability  in vitro. Moreover, the ASO-Au-TAT NPs significantly reduced metastatic tumor nodule formation in vivo. Our results demonstrate that the ASO-Au-TAT nanostructures (NSs) have great potential for treatment of cancer metastasis.

He XY, Liu BY, Peng Y, et al.
Multifunctional Vector for Delivery of Genome Editing Plasmid Targeting β-Catenin to Remodulate Cancer Cell Properties.
ACS Appl Mater Interfaces. 2019; 11(1):226-237 [PubMed] Related Publications
Accurate and efficient delivery of genome editing plasmids to targeted cells is of critical importance in genome editing. Herein, we prepared a multifunctional delivery vector with a combination of ligand-mediated selectivity and peptide-mediated transmembrane function to effectively deliver plasmids to targeted cancerous cells. In the delivery system, the clustered regularly interspaced short palindromic repeat-associated Cas9 nuclease (CRISPR-Cas9) plasmid is combined with protamine with membrane and nuclear translocating activities and co-precipitated with CaCO

Urtishak KA, Wang LS, Culjkovic-Kraljacic B, et al.
Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia.
Oncogene. 2019; 38(13):2241-2262 [PubMed] Article available free on PMC after 17/10/2019 Related Publications
The poor outcomes in infant acute lymphoblastic leukemia (ALL) necessitate new treatments. Here we discover that EIF4E protein is elevated in most cases of infant ALL and test EIF4E targeting by the repurposed antiviral agent ribavirin, which has anticancer properties through EIF4E inhibition, as a potential treatment. We find that ribavirin treatment of actively dividing infant ALL cells on bone marrow stromal cells (BMSCs) at clinically achievable concentrations causes robust proliferation inhibition in proportion with EIF4E expression. Further, we find that ribavirin treatment of KMT2A-rearranged (KMT2A-R) infant ALL cells and the KMT2A-AFF1 cell line RS4:11 inhibits EIF4E, leading to decreases in oncogenic EIF4E-regulated cell growth and survival proteins. In ribavirin-sensitive KMT2A-R infant ALL cells and RS4:11 cells, EIF4E-regulated proteins with reduced levels of expression following ribavirin treatment include MYC, MCL1, NBN, BCL2 and BIRC5. Ribavirin-treated RS4:11 cells exhibit impaired EIF4E-dependent nuclear to cytoplasmic export and/or translation of the corresponding mRNAs, as well as reduced phosphorylation of the p-AKT1, p-EIF4EBP1, p-RPS6 and p-EIF4E signaling proteins. This leads to an S-phase cell cycle arrest in RS4:11 cells corresponding to the decreased proliferation. Ribavirin causes nuclear EIF4E to re-localize to the cytoplasm in KMT2A-AFF1 infant ALL and RS4:11 cells, providing further evidence for EIF4E inhibition. Ribavirin slows increases in peripheral blasts in KMT2A-R infant ALL xenograft-bearing mice. Ribavirin cooperates with chemotherapy, particularly L-asparaginase, in reducing live KMT2A-AFF1 infant ALL cells in BMSC co-cultures. This work establishes that EIF4E is broadly elevated across infant ALL and that clinically relevant ribavirin exposures have preclinical activity and effectively inhibit EIF4E in KMT2A-R cases, suggesting promise in EIF4E targeting using ribavirin as a means of treatment.

Li P, Wei M, Zhang F, et al.
Novel Fluorescence Switch for MicroRNA Imaging in Living Cells Based on DNAzyme Amplification Strategy.
ACS Appl Mater Interfaces. 2018; 10(50):43405-43410 [PubMed] Related Publications
MicroRNAs (miRNAs) play important roles in the regulation of target gene expression and cell development. Therefore, developing of accurate and visual detection methods for miRNAs is important for early diagnosis of cancer. In this study, we established a visual detection method for miRNA 155 based on DNAzyme amplification strategy in living cells. MnO

Xiang J, Liu X, Zhou Z, et al.
Reactive Oxygen Species (ROS)-Responsive Charge-Switchable Nanocarriers for Gene Therapy of Metastatic Cancer.
ACS Appl Mater Interfaces. 2018; 10(50):43352-43362 [PubMed] Related Publications
The application of nonviral gene vectors has been limited by their insufficient transfection efficiency because of poor serum stability, high endosomal entrapment, limited intracellular release, and low accumulation in the targeted organelle. It is still challenging to design gene carriers with properties that can overcome all of the barriers. We previously developed a reactive oxygen species (ROS)-responsive cationic polymer, poly[(2-acryloyl)ethyl( p-boronic acid benzyl) diethylammonium bromide] (B-PDEAEA), which switches the charge at high concentrations of intracellular ROS to promote intracellular DNA release. However, its gene-delivery efficiency has been limited by serum instability and lysosomal trapping, and coating with an anionic PEGylated lipid only showed mild enhancement. Herein, we coated the ROS-responsive B-PDEAEA polymer with two cationic lipids to form ROS-responsive lipopolyplexes with integrated properties to overcome multiple delivery barriers. The surface cationic lipids endowed the nanocarrier with improved serum stability, effective cellular uptake, and lysosomal evasion. The interior B-PDEAEA/DNA polyplexes, which were highly stable in the extracellular environment, but quickly dissociated, released DNA, promoted nuclei localization, and achieved efficient transcription. The mechanisms of the ROS-responsive and charge-switchable properties of B-PDEAEA were quantitatively studied. The transfection efficiency and antitumor activity of lipopolyplexes were studied in vitro and in vivo. We found that the ROS-responsive lipopolyplexes effectively delivered therapeutic genes into cell nuclei and caused high tumor inhibition in mice bearing peritoneal or lung metastases.

Panattoni L, Lieu TA, Jayasekera J, et al.
The impact of gene expression profile testing on confidence in chemotherapy decisions and prognostic expectations.
Breast Cancer Res Treat. 2019; 173(2):417-427 [PubMed] Article available free on PMC after 01/01/2020 Related Publications
PURPOSE: Little is known about whether gene expression profile (GEP) testing and specific recurrence scores (e.g., medium risk) improve women's confidence in their chemotherapy decision or perceived recurrence risk. We evaluate the relationship between these outcomes and GEP testing.
METHODS: We surveyed women eligible for GEP testing (stage I or II, Gr1-2, ER+, HER2-) identified through the Surveillance, Epidemiology, and End Results (SEER) Registry of Washington or Kaiser Permanente Northern California from 2012 to 2016, approximately 0-4 years from diagnosis (N = 904, RR = 45.4%). Confidence in chemotherapy was measured as confident (Very, completely) versus Not Confident (Somewhat, A little, Not At All); perceived risk recurrence was recorded numerically (0-100%). Women reported their GEP test receipt (Yes, No, Unknown) and risk recurrence score (High, Intermediate, Low, Unknown). In our analytic sample (N = 833), we propensity score weighted the three test receipt cohorts and used propensity weighted multivariable regressions to examine associations between the outcomes and the three test receipt cohorts, with receipt stratified by score.
RESULTS: 29.5% reported an unknown GEP test receipt; 86% being confident. Compared to no test receipt, an intermediate score (aOR 0.34; 95% CI 0.20-0.58), unknown score (aOR 0.09; 95% CI 0.05-0.18), and unknown test receipt (aOR 0.37; 95% CI 0.24-0.57) were less likely to report confidence. Most women greatly overestimated their recurrence risk regardless of their test receipt or score.
CONCLUSIONS: GEP testing was not associated with greater confidence in chemotherapy decisions. Better communication about GEP testing and the implications for recurrence risk may improve women's decisional confidence.

Gara SK, Lack J, Zhang L, et al.
Metastatic adrenocortical carcinoma displays higher mutation rate and tumor heterogeneity than primary tumors.
Nat Commun. 2018; 9(1):4172 [PubMed] Article available free on PMC after 01/01/2020 Related Publications
Adrenocortical cancer (ACC) is a rare cancer with poor prognosis and high mortality due to metastatic disease. All reported genetic alterations have been in primary ACC, and it is unknown if there is molecular heterogeneity in ACC. Here, we report the genetic changes associated with metastatic ACC compared to primary ACCs and tumor heterogeneity. We performed whole-exome sequencing of 33 metastatic tumors. The overall mutation rate (per megabase) in metastatic tumors was 2.8-fold higher than primary ACC tumor samples. We found tumor heterogeneity among different metastatic sites in ACC and discovered recurrent mutations in several novel genes. We observed 37-57% overlap in genes that are mutated among different metastatic sites within the same patient. We also identified new therapeutic targets in recurrent and metastatic ACC not previously described in primary ACCs.

Tian B, Li J, Pang R, et al.
Gold Nanoparticles Biosynthesized and Functionalized Using a Hydroxylated Tetraterpenoid Trigger Gene Expression Changes and Apoptosis in Cancer Cells.
ACS Appl Mater Interfaces. 2018; 10(43):37353-37363 [PubMed] Related Publications
Understanding the synthetic mechanisms and cell-nanoparticle interactions of biosynthesized and functionalized gold nanoparticles (AuNPs) using natural products is of great importance for developing their applications in nanomedicine. In this study, we detailed the biotransformation mechanism of Au(III) into AuNPs using a hydroxylated tetraterpenoid deinoxanthin (DX) from the extremophile Deinococcus radiodurans. During the process, Au(III) was rapidly reduced to Au(I) and subsequently reduced to Au(0) by deprotonation of the hydroxyl head groups of the tetraterpenoid. The oxidized form, deprotonated 2-ketodeinoxanthin (DX3), served as a surface-capping agent to stabilize the AuNPs. The functionalized DX-AuNPs demonstrated stronger inhibitory activity against cancer cells compared with sodium citrate-AuNPs and were nontoxic to normal cells. DX-AuNPs accumulated in the cytoplasm, organelles, and nuclei, and induced reactive oxygen species generation, DNA damage, and apoptosis within MCF-7 cancer cells. In the cells treated with DX-AuNPs, 374 genes, including RRAGC gene, were upregulated; 135 genes, including the genes encoding FOXM1 and NR4A1, were downregulated. These genes are mostly involved in metabolism, cell growth, DNA damage, oxidative stress, autophagy, and apoptosis. The anticancer activity of the DX-AuNPs was attributed to the alteration of gene expression and induction of apoptosis. Our results provide significant insight into the synthesis mechanism of AuNPs functionalized with natural tetraterpenoids, which possess enhanced anticancer potential.

Zhou X, Xu L, Xu J, et al.
Construction of a High-Efficiency Drug and Gene Co-Delivery System for Cancer Therapy from a pH-Sensitive Supramolecular Inclusion between Oligoethylenimine- graft-β-cyclodextrin and Hyperbranched Polyglycerol Derivative.
ACS Appl Mater Interfaces. 2018; 10(42):35812-35829 [PubMed] Related Publications
Introducing genes into drug-delivery system for a combined therapy has become a promising strategy for cancer treatment. However, improving the in vivo therapy effect resulted from the high delivery efficiency, low toxicity, and good stability in the blood remains a challenge. For this purpose, the supramolecular inclusion was considered to construct a high-efficiency drug and gene co-delivery system in this work. The oligoethylenimine-conjugated β-cyclodextrin (β-CD-PEI600) and benzimidazole-modified four-arm-polycaprolactone-initiated hyperbranched polyglycerol (PCL-HPG-BM) were synthesized as the host and guest molecules, respectively, and then the co-delivery carrier of PCL-HPG-PEI600 was formed from the pH-mediated inclusion interaction between β-CD and BM. PCL-HPG-PEI600 showed the improved drug (doxorubicin, DOX) and gene (MMP-9 shRNA plasmid, pMMP-9) delivery ability in vivo, and their cellular uptake and intracellular delivery were investigated. Particularly, PCL-HPG-PEI600 showed excellent pMMP-9 delivery ability with significantly higher transfection efficiency than PEI25k due to its excellent serum resistance. For the combined therapy to breast cancer MCF-7 tumor, the co-delivery system of PCL-HPG-PEI600/DOX/pMMP-9 resulted in a much better inhibition effect on MCF-7 cell proliferation and migration in vitro as well as the suppression effect on MCF-7 tumors in vivo compared to those of single DOX or pMMP-9 formulation used. Moreover, PCL-HPG-PEI600 displayed nontoxicity and excellent blood compatibility, suggesting a promising drug and gene co-delivery carrier in combined therapy to tumors.

Liang T, Yao Z, Ding J, et al.
Cascaded Aptamers-Governed Multistage Drug-Delivery System Based on Biodegradable Envelope-Type Nanovehicle for Targeted Therapy of HER2-Overexpressing Breast Cancer.
ACS Appl Mater Interfaces. 2018; 10(40):34050-34059 [PubMed] Related Publications
Tumor-specific therapeutic platforms with improved targeting efficacy and minimized side effect are crucial in cancer therapy. Capitalizing on the recognition capability and biocompatibility of aptamers, we herein designed a multistage targeted drug-delivery system using multiple biodegradable molecules-enveloped nanovehicle that can be employed to efficiently treat human epithelial growth factor receptor (HER2)-overexpressing breast cancer. In this nanovehicle, two aptamers respectively specific to HER2 and ATP were organized in a hierarchical manner. The outmost HER2 aptamer (HB5) governs the recognition to HER2 protein overexpressed in SK-BR-3 cell lines, while the ATP aptamer incorporated with anticancer drug (-)-epigallocatechin gallate (EGCG) and protamine sulfate in the inner core functions as a switch of drug release in response to abundant intracellular ATP. The targeting and drug locker aptamers were cascaded for active targeting effect and stimuli responsiveness, guaranteeing the site-specific drug transportation and endogenous species-triggered drug release inside the tumor cells. Moreover, nanostructured lipid carriers (NLCs) were constructed to wrap and stabilize the loosely bounded ternary complex, minimizing premature drug leakage potentially encountered by the biomolecule assembled nanocarriers. This multiple biomolecules-enveloped nanovehicle demonstrated improved inhibitory actions on tumor growth and minimum side effect to normal organs and tissues both in vitro and in vivo. The presented nanovehicle built from recognition and therapeutic components in a nontoxic framework offered a promising drug-delivery platform with transport precision and biological safety.

Balachander GM, Talukdar PM, Debnath M, et al.
Inflammatory Role of Cancer-Associated Fibroblasts in Invasive Breast Tumors Revealed Using a Fibrous Polymer Scaffold.
ACS Appl Mater Interfaces. 2018; 10(40):33814-33826 [PubMed] Related Publications
Inflammation in cancer fuels metastasis and worsens prognosis. Cancer-associated fibroblasts (CAFs) present in the tumor stroma play a vital role in mediating the cascade of cancer inflammation that drives metastasis by enhancing angiogenesis, tissue remodeling, and invasion. In vitro models that faithfully recapitulate CAF-mediated inflammation independent of coculturing with cancer cells are nonexistent. We have engineered fibrous matrices of poly(ε-caprolactone) (PCL) that can maintain the manifold tumor-promoting properties of patient-derived CAFs, which would otherwise require repetitive isolation and complex coculturing with cancer cells. On these fibrous matrices, CAFs proliferated and remodeled the extracellular matrix (ECM) in a parallel-patterned manner mimicking the ECM of high-grade breast tumors and induced stemness in breast cancer cells. The response of the fibroblasts was observed to be sensitive to the scaffold architecture and not the polymer composition. The CAFs cultured on fibrous matrices exhibited increased activation of the NF-κB pathway and downstream proinflammatory gene expression compared to CAFs cultured on conventional two-dimensional (2D) dishes and secreted higher levels of proinflammatory cytokines such as IL-6, GM-CSF, and MIP-3α. Consistent with this, we observed increased infiltration of inflammatory cells to the tumor site and enhanced invasiveness of the tumor in vivo when tumor cells were injected admixed with CAFs grown on fibrous matrices. These data suggest that CAFs better retain their tumor-promoting proinflammatory properties on fibrous polymeric matrices, which could serve as a unique model to investigate the mechanisms of stroma-induced inflammation in cancer progression.

Fleming JM, Yeyeodu ST, McLaughlin A, et al.
In Situ Drug Delivery to Breast Cancer-Associated Extracellular Matrix.
ACS Chem Biol. 2018; 13(10):2825-2840 [PubMed] Related Publications
The extracellular matrix (ECM) contributes to tumor progression through changes induced by tumor and stromal cell signals that promote increased ECM density and stiffness. The increase in ECM stiffness is known to promote tumor cell invasion into surrounding tissues and metastasis. In addition, this scar-like ECM creates a protective barrier around the tumor that reduces the effectiveness of innate and synthetic antitumor agents. Herein, clinically approved breast cancer therapies as well as novel experimental approaches that target the ECM are discussed, including in situ hydrogel drug delivery systems, an emerging technology the delivers toxic chemotherapeutics, gene-silencing microRNAs, and tumor suppressing immune cells directly inside the tumor. Intratumor delivery of therapeutic agents has the potential to drastically reduce systemic side effects experienced by the patient and increase the efficacy of these agents. This review also describes the opposing effects of ECM degradation on tumor progression, where some studies report improved drug delivery and delayed cancer progression and others report enhanced metastasis and decreased patient survival. Given the recent increase in ECM-targeting drugs entering preclinical and clinical trials, understanding and addressing the factors that impact the effect of the ECM on tumor progression is imperative for the sake of patient safety and survival outcome.

Baraban E, Zhang PJ, Jaffer S, et al.
MYB rearrangement and immunohistochemical expression in adenomyoepithelioma of the breast: a comparison with adenoid cystic carcinoma.
Histopathology. 2018; 73(6):897-903 [PubMed] Related Publications
AIMS: Adenomyoepithelioma (AME) and adenoid cystic carcinoma (ACC) of the breast have been noted to occur simultaneously, raising the possibility that AME may represent a related or precursor lesion to ACC. ACC frequently harbours genetic rearrangement of the MYB gene. We sought to clarify the relationship between AME and ACC by comparing their rates of MYB expression by IHC and MYB rearrangement by FISH.
METHODS AND RESULTS: IHC and FISH for MYB rearrangement were performed on paraffin-embedded sections of 11 breast ACCs, 11 non-breast ACCs and 11 breast-AMEs. Using FISH, five of eight (63%) interpretable breast ACCs demonstrated MYB gene rearrangement. Nine of 11 (81%) breast ACCs demonstrated MYB expression (range = 20-95%). Of the three FISH-negative breast ACCs, two were solid variant and demonstrated strong MYB expression by IHC. Of the 10 interpretable non-breast ACCs, six showed MYB rearrangement, all of which were conventional type. Nine of these 11 (81%) cases showed MYB immunoexpression (range = 10-90%), including three solid-variant cases which were negative by FISH. No MYB rearrangements were detected by FISH in 10 interpretable AMEs. However, three of 11 cases (27%) showed weak to moderate MYB expression by IHC (range = 10-40%).
CONCLUSIONS: Our results indicate that AMEs do not harbour MYB gene rearrangement. IHC for MYB may be helpful in diagnosing FISH-negative cases of ACC, particularly the diagnostically more difficult solid variants. However, weak to moderate MYB expression in a subset of AMEs highlights not only a potential diagnostic pitfall, but also shared pathophysiology with ACC worth investigating further at the genomic level.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ACCS, Cancer Genetics Web: http://www.cancer-genetics.org/ACCS.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999