XAF1

Gene Summary

Gene:XAF1; XIAP associated factor 1
Aliases: BIRC4BP, XIAPAF1, HSXIAPAF1
Location:17p13.1
Summary:This gene encodes a protein which binds to and counteracts the inhibitory effect of a member of the IAP (inhibitor of apoptosis) protein family. IAP proteins bind to and inhibit caspases which are activated during apoptosis. The proportion of IAPs and proteins which interfere with their activity, such as the encoded protein, affect the progress of the apoptosis signaling pathway. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Feb 2012]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:XIAP-associated factor 1
Source:NCBIAccessed: 30 August, 2019

Ontology:

What does this gene/protein do?
Show (7)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 30 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 30 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: XAF1 (cancer-related)

Schluckebier L, Aran V, De Moraes J, et al.
XAF1 expression levels in a non-small cell lung cancer cohort and its potential association with carcinogenesis.
Oncol Rep. 2017; 38(1):402-410 [PubMed] Related Publications
The process of lung carcinogenesis is still not well understood and involves different levels of regulation of several genes. The search for molecular biomarkers, which can be applicable to clinical practice, has been the focus of various studies. XIAP-associated factor 1 (XAF1) was previously shown to be downregulated in many types of tumors, including squamous cell lung cancer. XAF1 is a pro-apoptotic protein and its restoration was found to sensitize cancer cells to apoptotic stimuli; however, the precise mechanism involved in the downregulation of XAF1 in tumors is unknown and promoter hypermethylation or heat-shock transcription factor 1 (HSF1) may be involved. Therefore, the aim of the present study was to evaluate the expression of XAF1 in tumors and adjacent non-tumor specimens from non-small cell lung cancer (NSCLC) patients, and its potential association with various factors including clinicopathological characteristics and other genes involved in NSCLC. Our results indicated that XAF1 expression was markedly altered in NSCLC tumor samples when compared to that found in normal lung tissues. Predominantly, XAF1 was downregulated in the tumors, except in never-smoker patients. In addition, XAF1 may also be important in the whole cell stress mechanism where the p53 status is crucial.

Wang Y, Liu P, Wang X, Mao H
Role of X‑linked inhibitor of apoptosis‑associated factor‑1 in vasculogenic mimicry in ovarian cancer.
Mol Med Rep. 2017; 16(1):325-330 [PubMed] Related Publications
X-linked inhibitor of apoptosis‑associated factor 1 (XAF1) was identified as a novel X-linked inhibitor of apoptosis (XIAP) binding partner that may reverse the anti‑apoptotic effect of XIAP. Previous studies have revealed that XAF1 serves an important role in cancer angiogenesis. Vasculogenic mimicry (VM) describes the formation of fluid‑conducting channels by highly invasive and genetically dysregulated tumor cells. VM is critical for tumor blood supply and is associated with aggressive actions and metastasis. The aim of present study was to investigate the potential association between XAF1 expression with VM of ovarian cancer, and evaluate the role of XAF1 in tumor cell migration and invasion of SKOV3 cells. VM structure and XAF1 expression were detected in 94 tissue samples of advanced epithelial ovarian cancer (EOC). Invasion and migration of the SKOV3 human ovarian carcinoma cell line were identified by Transwell assay. It was revealed that the presence of VM was associated with high grade advanced ovarian cancer. Reduced XAF1 expression was significantly associated with presence of VM. Overexpression of XAF1 significantly reduced invasion and migration of SKOV3 cells, and inhibited vascular endothelial growth factor protein expression. Furthermore, vasculature was suppressed by overexpression of XAF1 in vivo in xenograft models. In conclusion, XAF1 expression was associated with VM in ovarian cancer, suggesting a potential role of XAF1 in the formation of VM in EOC. These findings may facilitate the development of novel therapeutic agents for the treatment of ovarian cancer.

Shin CH, Lee MG, Han J, et al.
Identification of XAF1-MT2A mutual antagonism as a molecular switch in cell-fate decisions under stressful conditions.
Proc Natl Acad Sci U S A. 2017; 114(22):5683-5688 [PubMed] Free Access to Full Article Related Publications
XIAP-associated factor 1 (XAF1) is a tumor suppressor that is commonly inactivated in multiple human neoplasms. However, the molecular mechanism underlying its proapoptotic function remains largely undefined. Here, we report that XAF1 induction by heavy metals triggers an apoptotic switch of stress response by destabilizing metallothionein 2A (MT2A). XAF1 directly interacts with MT2A and facilitates its lysosomal degradation, resulting in the elevation of the free intercellular zinc level and subsequent activation of p53 and inactivation of XIAP. Intriguingly, XAF1 is activated as a unique transcription target of metal-regulatory transcription factor-1 (MTF-1) in signaling apoptosis, and its protein is destabilized via the lysosomal pathway by MTF-1-induced MT2A under cytostatic stress conditions, indicating the presence of mutual antagonism between XAF1 and MT2A. The antagonistic interplay between XAF1 and MT2A acts as a key molecular switch in MTF-1-mediated cell-fate decisions and also plays an important role in cell response to various apoptotic and survival factors. Wild-type (WT) XAF1 but not MT2A binding-deficient mutant XAF1 increases the free intracellular zinc level and accelerates WT folding of p53 and degradation of XIAP. Consistently, XAF1 evokes a more drastic apoptotic effect in

Goto H, Kariya R, Kudo E, et al.
Restoring PU.1 induces apoptosis and modulates viral transactivation via interferon-stimulated genes in primary effusion lymphoma.
Oncogene. 2017; 36(37):5252-5262 [PubMed] Related Publications
Primary effusion lymphoma (PEL), which is an aggressive subgroup of B-cell lymphoma associated with Kaposi sarcoma-associated herpes virus/human herpes virus-8, is refractory to the standard treatment, and exhibits a poor survival. Although PU.1 is downregulated in PEL, the potential role of its reduction remains to be elucidated. In this investigation, we analyzed the DNA methylation of PU.1 cis-regulatory elements in PEL and the effect of restoring PU.1 on PEL cells. The mRNA level of PU.1 was downregulated in PEL cells. The methylated promoter and enhancer regions of the PU.1 gene were detected in PEL cells. Suppression of cell growth and apoptosis were caused by the restoration of PU.1 in PEL cells. A microarray analysis revealed that interferon-stimulated genes (ISGs) including pro-apoptotic ISGs were strongly increased in BCBL-1 cells after the induction of PU.1. Reporter assays showed that PU.1 transactivated pro-apoptotic ISG promoters, such as the XAF1, OAS1 and TRAIL promoters. Mutations at the PU.1 binding sequences suppressed its transactivation. We confirmed the binding of PU.1 to the XAF1, OAS1 and TRAIL promoters in a chromatin immunoprecipitation assay. PU.1 suppressed ORF57 activation by inducing IRF7. The reinduction of PU.1 reduced formation of ascites and lymphoma cell infiltration of distant organs in PEL xenograft model mice. Collectively, PU.1 has a role in tumor suppression in PEL and its down-regulation is associated with PEL development. Restoring PU.1 with demethylation agents may be a novel therapeutic approach for PEL.

Reich TR, Switzeny OJ, Renovanz M, et al.
Epigenetic silencing of XAF1 in high-grade gliomas is associated with IDH1 status and improved clinical outcome.
Oncotarget. 2017; 8(9):15071-15084 [PubMed] Free Access to Full Article Related Publications
XAF1 (X-linked inhibitor of apoptosis (XIAP)-associated factor 1) is a tumor suppressor that counteracts the anti-apoptotic effects of XIAP and can sensitize cells to cell death triggering events. XAF1 knockdown abrogated the temozolomide (TMZ)-induced G2-arrest and prevented TMZ-induced apoptosis in the glioblastoma (GB) cell line LN229. Promoter methylation of XAF1 was found to be inversely correlated with mRNA expression in GB cells. We analyzed XAF1 methylation in a panel of 16 GB cell lines and 80 patients with first-diagnosed WHO grade III/IV high-grade gliomas using methylation-sensitive high-resolution melt (MS-HRM) analysis. In those patients, XAF1 promoter methylation was strongly associated with enhanced progression free and overall survival. Interestingly, XAF1 promoter methylation was strictly correlated with the occurrence of IDH1 mutations, indicating a causal link to the IDH1 mutant phenotype. XAF1 methylation was observed in 18 grade III tumors all of which showed heterozygous mutations in the IDH1 gene. 17 harbored a mutation leading to an arginine > histidine (R132H) and one carried a mutation causing an arginine > glycine (R132G) substitution. Furthermore, six out of six recurrent and IDH1 mutated grade III tumors also showed XAF1 promoter methylation. The data demonstrate that XAF1 promoter methylation determined by MS-HRM is a robust and precise indicator of IDH1 mutations in grade III gliomas. It is useful for complementing the immunohistochemistry-based detection of mutant IDH, uncovering rare 2-HG-producing IDH1 and potentially IDH2 mutations. The MS-HRM-based detection of XAF1 methylation could therefore be a reliable tool in assisting the sub-classification of high-grade gliomas.

Wang C, Li L, Yin Z, et al.
An indel polymorphism within pre-miR3131 confers risk for hepatocellular carcinoma.
Carcinogenesis. 2017; 38(2):168-176 [PubMed] Related Publications
Polymorphisms in pre-miRNAs may affect its expression, then have effect on its target mRNAs and be associated with cancer susceptibility. In this study, we evaluated the association of an indel polymorphism rs57408770 in pre-miR-3131 with hepatocellular carcinoma (HCC) susceptibility in a Chinese population. The contribution of rs57408770 to HCC risk was investigated in two independent case-control sets (1051 HCC and 1058 controls). Logistic regression analysis showed that the insertion allele of rs57408770 was significantly associated with an increased risk for HCC occurrence in both case-control studies. Moreover, the results of genotype-phenotype correlation analysis from both in vivo and in vitro experiments showed that the insertion allele was significantly correlated with higher expression of mature miR-3131 comparing with the deletion allele. The RNA-Binding Protein Immunoprecipitation assay results indicated that rs57408770 could affect the expression level of mature miR-3131 probably through disturbing the binding of splicing factor SRp20 with pre-miR-3131. Furthermore, overexpression of miR-3131 displayed a proliferation promoting and anti-apoptosis effect on HCC cell lines, suggesting that miR-3131 may act as a proto-oncogene in HCC. Finally, human genome-wide gene expression profile assay was used to screen the targets of miR-3131. The overexpressed miR-3131 could lead to a significant decrease of DTHD1 and XAF1 mRNA level. Taken together, our findings provided evidence that rs57408770 may play a functional role in the carcinogenesis of HCC by affecting SRp20 binding with pre-miR-3131 and affecting the expression of mature miR-3131, subsequently affecting the expression of DTHD1 and XAF1, thus confers risk for HCC.

Iravani O, Bay BH, Yip GW
Silencing HS6ST3 inhibits growth and progression of breast cancer cells through suppressing IGF1R and inducing XAF1.
Exp Cell Res. 2017; 350(2):380-389 [PubMed] Related Publications
Heparan sulfate 6-O-sulfation is biologically edited by 6-O-sulfotransferases (HS6STs) within heparan sulfate chains. Three isoforms of HS6ST have been identified. These enzymes are found to be differentially expressed in a variety of tissues. Recently, several studies have shown that dysregulation of 6-O-sulfotransferases could be involved in tumorigenesis of several cancers. This study aimed to analyze the expression and function of HS6ST3 in breast cancer. HS6ST3 was found up-regulated in T47D, MCF7 and MDA-MB231 breast cancer cell lines. HS6ST3 was then silenced in T47D and MCF7 using siRNA. Silencing HS6ST3 diminished tumor cell growth, migration and invasion, but enhanced cell adhesion and apoptosis in breast cancer. Gene microarray analysis revealed that silencing HS6ST3 significantly changed the expression of IGF1R and XAF1 in breast cancer cells. Further functional studies showed that the cellular processes were mediated by IGF1R and XAF1 after silencing HS6ST3 in breast cancer cells. Together these results indicate that HS6ST3 might be involved in the tumorigenesis of breast cancer and it could be a promising target in breast cancer therapy.

Ren M, Wang Z, Gao G, et al.
Impact of X-linked inhibitor of apoptosis protein on survival of nasopharyngeal carcinoma patients following radiotherapy.
Tumour Biol. 2016; 37(9):11825-11833 [PubMed] Related Publications
This study aims to investigate CNE1 and CNE2 cell proliferation and apoptosis of nasopharyngeal cancer (NPC) and X-linked inhibitor of apoptosis protein (XIAP) expression in NPC patients after radiotherapy. Quantitative real-time quantitative polymerase chain reaction (qRT-PCR) and Western Blot detected XIAP and XIAP-associated factor1 (XAF1) messenger RNA (mRNA) and protein expression of CNE1 and CNE2 in NPC cells irradiated by γ-ray; MTT and flow cytometry assays detected CNE2 cells proliferation and apoptotic rate, respectively. With a retrospective analysis of 109 NPC patients in Xinxiang Central Hospital, immunohistochemistry (IHC) method detected XIAP expression, followed by a 5-year clinical analysis of the prognosis relevance after radiotherapy. In vitro, the inhibition and apoptotic rates of cells increased with the growth of radiation dose. qRT-PCR and Western blot detection declared that XIAP mRNA and protein expression increased, whereas XAF1 mRNA and protein expression decreased with the growth of radiation dose and exposure time. And XIAP mRNA and protein expression were negatively correlated with proliferation and apoptotic rates of the cells. In vivo, positive XIAP expression rate was negatively correlated with pathological tumor-node-metastasis (p-TNM) staging and tumor differentiation. Further, high XIAP expression, high p-TNM staging, and lower degree of differentiation were significantly correlated with the decrease of NPC patients' survival rate. Additionally, XIAP expression, p-TNM staging, and degrees of differentiation were independent risk factors for the survival of the NPC patients after radiotherapy. Increased XIAP expression and decreased XAF1 expression may be one reason for the apoptosis delays of CNE1 and CNE2 cells after irradiation, and the XIAP expression or the p-TNM staging and degree of differentiation are independent risk factors for NPC patients' survival after radiotherapy, providing a molecular rationale for radiotherapy and prognosis of NPC.

Lei Y, Zhang B, Zhang Y, et al.
Lentivirus-mediated downregulation of MAT2B inhibits cell proliferation and induces apoptosis in melanoma.
Int J Oncol. 2016; 49(3):981-90 [PubMed] Related Publications
Malignant melanoma is the most lethal of skin cancers and its pathogenesis is complex and heterogeneous. The efficacy of conventional therapeutic regimens for melanoma remains limited. Thus, it is important to explore novel effective therapeutic targets in the treatment of melanoma. The MAT2B gene encodes for the regulatory subunit of methionine adenosyltransferase (MAT). Recent studies have suggested that MAT2B may have functional roles other than modulating catalytic activity of MAT. In order to identify the roles of MAT2B in the tumorigenesis of malignant melanoma, we compared MAT2B expression profile in melanoma tissues with that in benign nevus samples. We employed lentivirus-mediated RNAi to downregulate the expression of MAT2B in malignant melanoma cell lines (A375 and Mel-RM), and investigated the effects of MAT2B on cell growth, colony-formation ability and apoptosis in vitro, as well as tumor growth of a xenograft model in vivo. The expression levels of BCL2 and XAF1 proteins, which were closely related to tumor cell apoptosis, were analyzed by western blot analysis. Our data showed that MAT2B was elevated in both primary and metastatic melanoma tissues compared with benign nevus samples. Lentivirus-mediated downregulation of MAT2B suppressed cell growth, colony formation and induced apoptosis in A375 and Mel-RM cell lines in vitro, affected protein expression of BCL2 and XAF1, extended the transplanted tumor growth in vivo. These results indicated that MAT2B was critical in the proliferation of melanoma cells and tumorigenicity. It may be considered as a potential anti-melanoma therapeutic target.

Aka JA, Calvo EL, Lin SX
Estradiol-independent modulation of breast cancer transcript profile by 17beta-hydroxysteroid dehydrogenase type 1.
Mol Cell Endocrinol. 2017; 439:175-186 [PubMed] Related Publications
17beta-hydroxysteroid dehydrogenase type 1 (17β-HSD1) is a steroidal enzyme which, in breast cancer cells, mainly synthesizes 17-beta-estradiol (E2), an estrogenic hormone that stimulates breast cancer cell growth. We previously showed that the enzyme increased breast cancer cell proliferation via a dual effect on E2 and 5α-dihydrotestosterone (DHT) levels and impacted gene expression and protein profile of breast cancer cells cultured in E2-contained medium. Here, we used RNA interference technique combined with microarray analyses to investigate the effect of 17β-HSD1 expression on breast cancer cell transcript profile in steroid-deprived condition. Our data revealed that knockdown of 17β-HSD1 gene, HSD17B1, modulates the transcript profile of the hormone-dependent breast cancer cell line T47D, with 105 genes regulated 1.5 fold or higher (p < 0.05) in estradiol-independent manner. Using Ingenuity Pathway Analysis (IPA), we additionally assessed functional enrichment analyses, including biological functions and canonical pathways, and found that, in concordance with the role of 17β-HSD1 in cancer cell growth, most regulated genes are cancer-related genes. Genes that primarily involved in the cell cycle progression, such as the cyclin A2 gene, CCNA2, are generally down-regulated whereas genes involved in apoptosis and cell death, including the pro-apoptotic gene XAF1, IFIH1 and FGF12, are on the contrary up-regulated by 17β-HSD1 knockdown, and 21% of the modulated genes belong to this latter functional category. This indicates that 17β-HSD1 may be involved in oncogenesis by favoring anti-apoptosis pathway in breast cancer cells and correborates with its previously shown role in increasing breast cancer cell proliferation. The gene regulation occurring in steroid-deprived conditions showed that 17β-HSD1 can modulate endogenous gene expression in steroid-independent manners. Besides, we tested the ability of estrogen to induce or repress endogenous genes of T47D by microarray analysis. Expression of a total of 130 genes were found to increase or decrease 1.5-fold or higher (p < 0.05) in response to E2 treatment (1 nM for 48 h), revealing a list of potential new estrogen-responsive genes and providing useful information for further studies of estrogen-dependent breast cancer mechanisms. In conclusion, in breast cancer cells, in addition to its implication in the E2-dependent gene transcription, the present study demonstrates that 17β-HSD1 also modulates gene expression via mechanisms independent of steroid actions. Those mechanisms that may include the ligand-independent gene transcription of estrogen receptor alpha (ERα), whose expression is positively correlated with that of the enzyme, and that may implicate 17β-HSD1 in anti-apoptosis pathways, have been discussed.

Hastie E, Cataldi M, Moerdyk-Schauwecker MJ, et al.
Novel biomarkers of resistance of pancreatic cancer cells to oncolytic vesicular stomatitis virus.
Oncotarget. 2016; 7(38):61601-61618 [PubMed] Free Access to Full Article Related Publications
Vesicular stomatitis virus (VSV) based recombinant viruses (such as VSV-ΔM51) are effective oncolytic viruses (OVs) against a majority of pancreatic ductal adenocarcinoma (PDAC) cell lines. However, some PDAC cell lines are highly resistant to VSV-ΔM51. We recently showed that treatment of VSV-resistant PDAC cells with ruxolitinib (JAK1/2 inhibitor) or TPCA-1 (IKK-β inhibitor) breaks their resistance to VSV-ΔM51. Here we compared the global effect of ruxolitinib or TPCA-1 treatment on cellular gene expression in PDAC cell lines highly resistant to VSV-ΔM51. Our study identified a distinct subset of 22 interferon-stimulated genes (ISGs) downregulated by both ruxolitinib and TPCA-1. Further RNA and protein analyses demonstrated that 4 of these genes (MX1, EPSTI1, XAF1, and GBP1) are constitutively co-expressed in VSV-resistant, but not in VSV-permissive PDACs, thus serving as potential biomarkers to predict OV therapy success. Moreover, shRNA-mediated knockdown of one of such ISG, MX1, showed a positive effect on VSV-ΔM51 replication in resistant PDAC cells, suggesting that at least some of the identified ISGs contribute to resistance of PDACs to VSV-ΔM51. As certain oncogene and tumor suppressor gene variants are often associated with increased tropism of OVs to cancer cells, we also analyzed genomic DNA in a set of PDAC cell lines for frequently occurring cancer associated mutations. While no clear correlation was found between such mutations and resistance of PDACs to VSV-ΔM51, the analysis generated valuable genotypic data for future studies.

Chen X, Yang M, Hao W, et al.
Differentiation-inducing and anti-proliferative activities of isoliquiritigenin and all-trans-retinoic acid on B16F0 melanoma cells: Mechanisms profiling by RNA-seq.
Gene. 2016; 592(1):86-98 [PubMed] Related Publications
Melanoma is a cancer that arises from melanocytes, specialized pigmented cells that are found predominantly in the skin. The incidence of malignant melanoma has significantly increased over the last decade. With the development of therapy, the survival rate of some kind of cancer has been improved greatly. But the treatment of melanoma remains unsatisfactory. Much of melanoma's resistance to traditional chemotherapy is believed to arise intrinsically, by virtue of potent growth and cell survival-promoting genetic alteration. Therefore, significant attention has recently been focused on differentiation therapy, as well as differentiation inducer compounds. In previous study, we found isoliquiritigenin (ISL), a natural product extracted from licorice, could induce B16F0 melanoma cell differentiation. Here we investigated the transcriptional response of melanoma differentiation process induced by ISL and all-trans-retinoic acid (RA). Results showed that 390 genes involves in 201 biochemical pathways were differentially expressed in ISL treatment and 304 genes in 193 pathways in RA treatment. Differential expressed genes (DGEs, fold-change (FC)≥10) with the function of anti-proliferative and differentiation inducing indicated a loss of grade malignancy characteristic. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated glutathione metabolism, glycolysis/gluconeogenesis and pentose phosphate pathway were the top three relative pathway perturbed by ISL, and mitogen-activated protein kinase (MAPK) signaling pathway was the most important pathway in RA treatment. In the analysis of hierarchical clustering of DEGs, we discovered 72 DEGs involved in the process of drug action. We thought Cited1, Tgm2, Xaf1, Cd59a, Fbxo2, Adh7 may have critical role in the differentiation of melanoma. The evidence displayed herein confirms the critical role of reactive oxygen species (ROS) in melanoma pathobiology and provides evidence for future targets in the development of next-generation biomarkers and therapeutics.

Park GB, Park SH, Kim D, et al.
Berberine induces mitochondrial apoptosis of EBV-transformed B cells through p53-mediated regulation of XAF1 and GADD45α.
Int J Oncol. 2016; 49(1):411-21 [PubMed] Related Publications
Berberine exhibits antiproliferative or cytotoxic effects against various cancers. ROS and wild-type p53 play a critical role in berberine-induced cytotoxic effects. In this study, we investigated the correlation between XAF1 and functional p53 in EBV-transformed B cells or cancerous B cells after treatment with berberine. Berberine decreased cell viability and induced apoptosis through a mitochondria-dependent pathway in EBV-transformed B cells and cancerous B cells, but not in normal peripheral blood mononuclear cells. Activated p53 and its downstream targets XAF1 and GADD45α interacted with PUMA, Bax, and Bim in mitochondria after treatment with berberine. Blocking phosphorylation of p38/JNK MAPK and treatment with PFT-α, a selective p53 inhibitor, effectively prevented apoptosis and the upregulation of phosphorylated p53, XAF1, and GADD45α. NAC, a ROS scavenger, also suppressed berberine-induced mitochondria disruption and the whole apoptotic process via restoration of p53-related proteins and proapoptotic Bcl-2 family proteins. Taken together, our results suggest that ROS generation might be a predisposing event in berberine-induced mitochondrial apoptosis in EBV-transformed B cells through the upregulation of XAF1 and GADD45α expression by MAPK and functional p53.

Li K, Li X, Wu Z, et al.
Adenovirus encoding XAF-1 and TNF‑α in the same open reading frame efficiently inhibits hepatocellular cancer cells.
Mol Med Rep. 2016; 13(6):5169-76 [PubMed] Related Publications
X‑linked inhibitor of apoptosis (XIAP)‑associated factor 1 (XAF‑1), a tumor suppressor, is downregulated in most human malignant tumors. However, the tumor suppressive role of XAF‑1 in hepatocellular carcinoma (HCC) and its therapeutic value require further elucidation. The present study examined the expression of XAF‑1 at the mRNA and protein level in the HCC and paired peritumor tissue specimens, as well as in HCC cell lines and a normal liver cell line. A recombinant adenovirus which co‑expressed XAF‑1 and TNF‑α was then constructed, and its effects on the proliferation and colony formation ability of the MHCC97H HCC cell line were assessed using apoptosis induction, flow cytometry, trypan blue staining assay and a clonogenic assay. The results demonstrated that the expression of XAF‑1 was significantly reduced in HCC tissues compared with that in their matched peritumor specimens, and a significant correlation with the tumor size, stage and tumor ‑ nodes ‑ metastasis stage was identified. The reduced levels of XAF‑1 were further confirmed the HCC cell lines MHCC97L, HepG2 and MHCC97H compared with those in the L02 normal liver cell line. The recombinant adenovirus Ad‑XAF‑1&TNF‑α, which co‑expressed XAF‑1 and TNF‑α, was shown to efficiently express the two proteins at the mRNA and protein level. Furthermore, infection with Ad‑XAF‑1&TNF‑α synergistically induced apoptosis, reduced the proliferation and colony formation ability of MHCC97L cells to a significantly greater extent than overexpression of XAF‑1 or TNF‑α individually. To the best of our knowledge, the present study was the first to construct an adenovirus which co‑expressed XAF‑1 and TNF‑α in the same open reading frame and expressed them proportionally. As Ad‑XAF‑1&TNF‑α inhibited HCC cells with enhanced efficiency, it may be applicable for the treatment of HCC.

Choo Z, Koh RY, Wallis K, et al.
XAF1 promotes neuroblastoma tumor suppression and is required for KIF1Bβ-mediated apoptosis.
Oncotarget. 2016; 7(23):34229-39 [PubMed] Free Access to Full Article Related Publications
Neuroblastoma is an aggressive, relapse-prone childhood tumor of the sympathetic nervous system. Current treatment modalities do not fully exploit the genetic basis between the different molecular subtypes and little is known about the targets discovered in recent mutational and genetic studies. Neuroblastomas with poor prognosis are often characterized by 1p36 deletion, containing the kinesin gene KIF1B. Its beta isoform, KIF1Bβ, is required for NGF withdrawal-dependent apoptosis, mediated by the induction of XIAP-associated Factor 1 (XAF1). Here, we showed that XAF1 low expression correlates with poor survival and disease status. KIF1Bβ deletion results in loss of XAF1 expression, suggesting that XAF1 is indeed a downstream target of KIF1Bβ. XAF1 silencing protects from NGF withdrawal and from KIF1Bβ-mediated apoptosis. Overexpression of XAF1 impairs tumor progression whereas knockdown of XAF1 promotes tumor growth, suggesting that XAF1 may be a candidate tumor suppressor in neuroblastoma and its associated pathway may be important for developing future interventions.

Lee SH, Lee EH, Lee SH, et al.
Epigenetic Role of Histone 3 Lysine Methyltransferase and Demethylase in Regulating Apoptosis Predicting the Recurrence of Atypical Meningioma.
J Korean Med Sci. 2015; 30(8):1157-66 [PubMed] Free Access to Full Article Related Publications
Alteration of apoptosis is related with progression and recurrence of atypical meningiomas (AMs). However, no comprehensive study has been conducted regarding histone modification regulating apoptosis in AMs. This study aimed to determine the prognostic values of certain apoptosis-associated factors, and examine the role of histone modification on apoptosis in AMs. The medical records of 67 patients with AMs, as diagnosed during recent 13 yr, were reviewed retrospectively. Immunohistochemical staining was performed on archived paraffin-embedded tissues for pro-apoptotic factors (CASP3, IGFBP, TRAIL-R1, BAX, and XAF1), anti-apoptotic factors (survivin, ERK, RAF1, MDM2, and BCL2), and the histone modifying enzymes (MLL2, RIZ, EZH1, NSD2, KDM5c, JMJD2a, UTX, and JMJD5). Twenty-six (38.8%) patients recurred during the follow-up period (mean duration 47.7 months). In terms of time-to-recurrence (TTR), overexpression of CASP3, TRAIL-R1, and BAX had a longer TTR than low expression, and overexpression of survivin, MDM2, and BCL2 had a shorter TTR than low expression (P<0.05). Additionally, overexpression of MLL2, UTX, and JMJ5 had shorter TTRs than low expression, and overexpression of KDM5c had a longer TTR than low expression. However, in the multi-variate analysis of predicting factors for recurrence, low expression of CASP3 (P<0.001), and BAX (P<0.001), and overexpression of survivin (P=0.007), and MDM2 (P=0.037) were associated with recurrence independently, but any enzymes modifying histone were not associated with recurrence. Conclusively, this study suggests certain apoptosis-associated factors should be associated with recurrence of AMs, which may be regulated epigenetically by histone modifying enzymes.

Yang WT, Chen DL, Zhang FQ, et al.
Experimental study on inhibition effects of the XAF1 gene against lung cancer cell proliferation.
Asian Pac J Cancer Prev. 2014; 15(18):7825-9 [PubMed] Related Publications
OBJECTIVE: To investigate the effect of high expression of XAF1 in vivo or in vitro on lung cancer cell growth and apoptosis.
METHODS: 1. The A549 human lung cancer cell line was transfected with Ad5/F35 - XAF1, or Ad5/ F35 - Null at the same multiplicity of infection (MOI); (hereinafter referred to as transient transfected cell strain); XAF1 gene mRNA and protein expression was detected by reverse transcription polymerase chain reaction (RT- PCR) and Western blotting respectively. 2. Methyl thiazolyl tetrazolium (MTT) and annexin V-FITC/PI double staining were used to detect cell proliferation and apoptosis before and after infection of Ad5/F35 - XAF1 with Western blotting for apoptosis related proteins, caspase 3, caspase - 8 and PARP. 3. After the XAF1 gene was transfected into lung cancer A549 cells by lentiviral vectors, and selected by screening with Blasticidin, reverse transcription polymerase chain reaction (RT-PCR) and Western blotting were applied to detect mRNA and protein expression, to establish a line with a stable high expression of XAF1 (hereinafter referred to as stable expression cell strain). Twenty nude mice were randomly divided into groups A and B, 10 in each group: A549/ XAF1 stable expression cell strain was subcutaneously injected in group A, and A549/Ctrl stable cell line stable expression cell strain in group B (control group), to observe transplanted tumor growth in nude mice.
RESULTS: The mRNA and protein expression of XAF1 in A549 cells transfected by Ad5/F35 - XAF1 was significantly higher than in the control group. XAF1 mediated by adenovirus vector demonstrated a dose dependent inhibition of lung cancer cell proliferation and induction of apoptosis. This was accompanied by cleavage of caspase -3, -8, -9 and PARP, suggesting activation of intrinsic or extrinsic apoptotic pathways. A cell strain of lung cancer highly expressing XAF1 was established, and this demonstrated delayed tumor growth after transplantation in vivo.
CONCLUSION: Adenovirus mediated XAF1 gene expression could inhibit proliferation and induce apoptosis in lung cancer cells in vitro; highly stable expression of XAF1 could also significantly inhibit the growth of transplanted tumors in nude mouse, with no obvious adverse reactions observed. Therefore, the XAF1 gene could become a new target for lung cancer treatment.

Ma B, Wang Y, Zhou X, et al.
Synergistic suppression effect on tumor growth of hepatocellular carcinoma by combining oncolytic adenovirus carrying XAF1 with cisplatin.
J Cancer Res Clin Oncol. 2015; 141(3):419-29 [PubMed] Related Publications
PURPOSE: The potent anticancer efficacy of oncolytic viruses has been verified in Clinic in recent years. Cisplatin (DDP) is one of most common chemotherapeutic drugs, but is accompanied by side effects and drug resistance. Our previous studies have shown the strategy of cancer -targeting gene-viro-therapy (CTGVT) mediated by the oncolytic virus ZD55 containing the XAF1 cDNA (ZD55-XAF1), which exhibited potent antitumor effects in various tumor cells and no apparent toxicities on normal cells. In the study, the CTGVT strategy is broadened by combining DDP with ZD55-XAF1 for growth inhibition of hepatocellular carcinoma (HCC) cells.
METHODS: The transgenic expression was evaluated by both in vitro and in vivo experiments, and the enhanced inhibitory effect of ZD55-XAF1 combined with cisplatin was assessed in HCC cells. The cytotoxicity on normal liver cells was evaluated by MTT assay and apoptotic cell staining. Activation of caspase-9 and PARP for apoptosis was further detected by Western blot analysis. The in vivo antitumor efficacy of combination treatment with cisplatin and ZD55-XAF1 was estimated in an HCC xenograft mouse model.
RESULTS: We found that the combination of ZD55-XAF1 and cisplatin showed enhanced inhibitory effects on the proliferation of HCC cells in vitro and tumor growth in mice. Furthermore, the combined treatment of ZD55-XAF1 and DDP decreases the chemotherapy dose needed to achieve the same inhibitory effect without overlapping toxicities on normal liver cells and induces tumor cell apoptosis via the activation of caspase-9/PARP pathway.
CONCLUSION: Thus, these data suggest that the chemo-gene-viro-therapeutic strategy by combining ZD55-XAF1 and DDP reveals a novel therapeutic strategy for hepatocellular carcinoma.

Hatakeyama K, Yamakawa Y, Fukuda Y, et al.
A novel splice variant of XIAP-associated factor 1 (XAF1) is expressed in peripheral blood containing gastric cancer-derived circulating tumor cells.
Gastric Cancer. 2015; 18(4):751-61 [PubMed] Related Publications
BACKGROUND: XIAP-associated factor 1 (XAF1) is ubiquitously expressed in normal tissues, but its suppression in cancer cells is strongly associated with tumor progression. Although downregulation of XAF1 is observed in tumors, its expression profile in the peripheral blood of cancer patients has not yet been investigated. Here, we identified a novel XAF1 splice variant in cancer cells and then investigated the expression level of this variant in peripheral blood containing gastric cancer-derived circulating tumor cells (CTCs).
METHODS: To identify splice variants, RT-PCR and DNA sequencing were performed in mRNAs extracted from many cancer cells. We then carried out quantitative RT-PCR to investigate expression in peripheral blood from all 96 gastric cancer patients and 22 healthy volunteers.
RESULTS: The XAF1 variant harbored a premature termination codon (PTC) and was differentially expressed in highly metastatic cancer cells versus the parental cells, and that nonsense-mediated mRNA decay (NMD) was suppressed in the variant-expressing cells. Furthermore, splice variants of XAF1 were upregulated in peripheral blood containing CTCs. In XAF1 variant-expressing patients, the expression levels of other NMD-targeted genes also increased, suggesting that the NMD pathway was suppressed in CTCs.
CONCLUSIONS: Our study identified a novel splice variant of XAF1 in cancer cells. This variant was regulated through the NMD pathway and accumulated in NMD-suppressed metastatic cancer cells and peripheral blood containing CTCs. The presence of XAF1 transcripts harboring the PTC in the peripheral blood may be useful as an indicator of NMD inhibition in CTCs.

Zhu LM, Shi DM, Dai Q, et al.
Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma.
Oncotarget. 2014; 5(14):5403-15 [PubMed] Free Access to Full Article Related Publications
X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1), a XIAP-binding protein, is a tumor suppressor gene. XAF1 was silent or expressed lowly in most human malignant tumors. However, the role of XAF1 in hepatocellular carcinoma (HCC) remains unknown. In this study, we investigated the effect of XAF1 on tumor growth and angiogenesis in hepatocellular cancer cells. Our results showed that XAF1 expression was lower in HCC cell lines SMMC-7721, Hep G2 and BEL-7404 and liver cancer tissues than that in paired non-cancer liver tissues. Adenovirus-mediated XAF1 expression (Ad5/F35-XAF1) significantly inhibited cell proliferation and induced apoptosis in HCC cells in dose- and time- dependent manners. Infection of Ad5/F35-XAF1 induced cleavage of caspase -3, -8, -9 and PARP in HCC cells. Furthermore, Ad5/F35-XAF1 treatment significantly suppressed tumor growth in a xenograft model of liver cancer cells. Western Blot and immunohistochemistry staining showed that Ad5/F35-XAF1 treatment suppressed expression of vascular endothelial growth factor (VEGF), which is associated with tumor angiogenesis, in cancer cells and xenograft tumor tissues. Moreover, Ad5/F35-XAF1 treatment prolonged the survival of tumor-bearing mice. Our results demonstrate that XAF1 inhibits tumor growth by inducing apoptosis and inhibiting tumor angiogenesis. XAF1 may be a promising target for liver cancer treatment.

Chen P, Wang H, Duan Z, et al.
Estrogen-related receptor alpha confers methotrexate resistance via attenuation of reactive oxygen species production and P53 mediated apoptosis in osteosarcoma cells.
Biomed Res Int. 2014; 2014:616025 [PubMed] Free Access to Full Article Related Publications
Osteosarcoma (OS) is a malignant tumor mainly occurring in children and adolescents. Methotrexate (MTX), a chemotherapy agent, is widely used in treating OS. However, treatment failures are common due to acquired chemoresistance, for which the underlying molecular mechanisms are still unclear. In this study, we report that overexpression of estrogen-related receptor alpha (ERR α ), an orphan nuclear receptor, promoted cell survival and blocked MTX-induced cell death in U2OS cells. We showed that MTX induced ROS production in MTX-sensitive U2OS cells while ERR α effectively blocked the ROS production and ROS associated cell apoptosis. Our further studies demonstrated that ERR α suppressed ROS induction of tumor suppressor P53 and its target genes NOXA and XAF1 which are mediators of P53-dependent apoptosis. In conclusion, this study demonstrated that ERR α plays an important role in the development of MTX resistance through blocking MTX-induced ROS production and attenuating the activation of p53 mediated apoptosis signaling pathway, and points to ERR α as a novel target for improving osteosarcoma therapy.

Gala MK, Mizukami Y, Le LP, et al.
Germline mutations in oncogene-induced senescence pathways are associated with multiple sessile serrated adenomas.
Gastroenterology. 2014; 146(2):520-9 [PubMed] Free Access to Full Article Related Publications
BACKGROUND & AIMS: Little is known about the genetic factors that contribute to the development of sessile serrated adenomas (SSAs). SSAs contain somatic mutations in BRAF or KRAS early in development. However, evidence from humans and mouse models indicates that these mutations result in oncogene-induced senescence (OIS) of intestinal crypt cells. Progression to serrated neoplasia requires cells to escape OIS via inactivation of tumor suppressor pathways. We investigated whether subjects with multiple SSAs carry germline loss-of function mutations (nonsense and splice site) in genes that regulate OIS: the p16-Rb and ATM-ATR DNA damage response pathways.
METHODS: Through a bioinformatic analysis of the literature, we identified a set of genes that function at the main nodes of the p16-Rb and ATM-ATR DNA damage response pathways. We performed whole-exome sequencing of 20 unrelated subjects with multiple SSAs; most had features of serrated polyposis. We compared sequences with those from 4300 subjects matched for ethnicity (controls). We also used an integrative genomics approach to identify additional genes involved in senescence mechanisms.
RESULTS: We identified mutations in genes that regulate senescence (ATM, PIF1, TELO2,XAF1, and RBL1) in 5 of 20 subjects with multiple SSAs (odds ratio, 3.0; 95% confidence interval, 0.9–8.9; P =.04). In 2 subjects,we found nonsense mutations in RNF43, indicating that it is also associated with multiple serrated polyps (odds ratio, 460; 95% confidence interval, 23.1–16,384; P = 6.8 x 10(-5)). In knockdown experiments with pancreatic duct cells exposed to UV light, RNF43 appeared to function as a regulator of ATMATRDNA damage response.
CONCLUSIONS: We associated germline loss-of-function variants in genes that regulate senescence pathways with the development of multiple SSAs.We identified RNF43 as a regulator of the DNA damage response and associated nonsense variants in this gene with a high risk of developing SSAs.

Park GB, Kim YS, Kim D, et al.
Melphalan-induced apoptosis of EBV-transformed B cells through upregulation of TAp73 and XAF1 and nuclear import of XPA.
J Immunol. 2013; 191(12):6281-91 [PubMed] Related Publications
Melphalan (Mel) is widely used to treat patients with hematologic cancer, including multiple myeloma, but its mechanism of action in EBV-transformed B cells is poorly described. In this study, we demonstrate a novel mechanism by which transcriptionally active p73 (TAp73) induces translocation of X-linked inhibitor of apoptosis protein-associated factor 1 (XAF1) and xeroderma pigmentosum group A (XPA) during apoptosis caused by Mel treatment. We observed that Mel induced significant generation of reactive oxygen species (ROS) and subsequent apoptosis, as well as an early phosphorylation of p38 MAPK that preceded expression of the mitochondria membrane potential disruption-related molecules and the cleavage of caspases. In particular, Mel led to upregulation of TAp73, XAF1, and Puma and induced XPA nuclear import and translocation of Bax into mitochondria. Mel-induced apoptosis was inhibited by pretreatment with the ROS scavenger 4-amino-2,4-pyrrolidine-dicarboxylic acid (APDC) and the p38 MAPK inhibitor SB203580. We supposed that ROS generation might be the first event in Mel-induced apoptosis, because APDC blocked the increase in ROS, p38 MAPK, and TAp73, but SB203580 did not block ROS generation. Moreover, Mel elicited activation of ATR, and APDC inhibited phosphorylation of ATR but not SB203580. APDC and SB203580 completely blocked XPA and Bax translocation. We conclude that Mel promotes TAp73-mediated XAF1 and Puma expression via ROS generation and ATR/p38 MAPK pathway activation, thereby triggering apoptosis. Our results provide evidence of a novel alternate regulatory mechanism of TAp73 and reveal that Mel may be a therapeutic drug for curing EBV-related malignancies.

Ling ZQ, Lv P, Lu XX, et al.
Circulating Methylated XAF1 DNA Indicates Poor Prognosis for Gastric Cancer.
PLoS One. 2013; 8(6):e67195 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Methylated DNA in fluids may be a suitable biomarker for cancer patients. XAF1 has been shown to be frequently down-regulated in human gastric cancer (GC). Here, we investigated if XAF1 methylation in GC could be a useful biomarker.
METHODS: Real-time RT-PCR was used to detect XAF1 mRNA expression; immunohistochemistry and western blot were used to examine XAF1 protein expression in GC tissues (n = 202) and their corresponding para-cancerous histological normal tissues (PCHNTs). Real-time methylation specific-PCR was used to investigate XAF1 promoter methylation in the same panel of GC tissues, their PCHNTs and sera.
RESULTS: We confirmed frequent XAF1 down-regulation in both mRNA and protein levels in GC tissues as compared to normal controls and PCHNTs. XAF1 hypermethylation was evidenced in 83.2% (168/202) of GC tissues and 27.2% (55/202) of PCHNTs, while no methylation was detected in the 88 normal controls. The methylation level in GC tissues was significantly higher than that in PCHNTs (p<0.05). The hypermethylation of XAF1 significantly correlated with the down-regulation of XAF1 in GC tissues in both mRNA and protein levels (p<0.001 each). Moreover, we detected high frequency of XAF1 methylation (69.8%, 141 out of 202) in the sera DNAs from the same patients, while the sera DNAs from 88 non-tumor controls were negative for XAF1 methylation. The XAF1 methylation in both GC tissues and in the sera could be a good biomarker for diagnosis of GC (AUC = 0.85 for tissue and AUC = 0.91 for sera) and significantly correlated with poorer prognosis (p<0.001). In addition, after-surgery negative-to-positive transition of XAF1 methylation in sera strongly associated with tumor recurrence.
CONCLUSIONS: 1) Dysfunction of XAF1 is frequent and is regulated through XAF1 promoter hypermethylation; 2) Detection of circulating methylated XAF1 DNAs in the serum may be a useful biomarker in diagnosis, evaluating patient's outcome (prognosis and recurrence) for GC patients.

Park GB, Choi Y, Kim YS, et al.
ROS and ERK1/2-mediated caspase-9 activation increases XAF1 expression in dexamethasone-induced apoptosis of EBV-transformed B cells.
Int J Oncol. 2013; 43(1):29-38 [PubMed] Free Access to Full Article Related Publications
Dexamethasone (Dex) inhibits the growth of diverse types of cancer cells and is utilized clinically for the therapy of hematological malignancies. In this study, we investigated the molecular mechanisms of Dex action in the apoptosis of Epstein-Barr virus (EBV)-transformed B cells. We showed that Dex inhibited the proliferation of EBV-transformed B cells and induced apoptosis by activating caspase-9, -3 and -8. While activation of caspase-9 was triggered as early as 2 h after Dex treatment, cleavage of caspase-8 was deferred and was found 8 h after the exposure. Dex-dependent activation of caspase-8 was blocked by the specific caspase-9 inhibitor, z-LEHD-fmk. Moreover, Dex significantly increased the expression of X-linked inhibitor of apoptosis (XIAP)‑associated factor 1 (XAF1) and induced the translocation of XAF1 into the cytosol. Cytosolic XAF1 with Puma induced the translocation of Bax into mitochondria. Dex led to up-regulation of reactive oxygen species (ROS) generation and the phosphorylation of ERK1/2 after the exposure. We speculated that ROS generation might be the first event of Dex-induced apoptosis because ROS inhibitor NAC abrogated ROS production and ERK1/2 activation, but PD98059 did not block ROS production. NAC and PD98059 also suppressed the translocation of XAF1, Puma and Bax into mitochondria. These results demonstrated that Dex-mediated activation of caspase-9 via ROS generation and ERK1/2 pathway activation resulted in the activation of caspase-8 and the increment of XAF1, thereby induced apoptosis of EBV-transformed B cells. These findings suggest that Dex constitutes a probable therapy for EBV-associated hematological malignancies.

Kim SK, Park HJ, Seok H, et al.
Missense polymorphisms in XIAP-associated factor-1 (XAF1) and risk of papillary thyroid cancer: correlation with clinicopathological features.
Anticancer Res. 2013; 33(5):2205-10 [PubMed] Related Publications
X-Linked inhibitor of apoptosis (XIAP)-associated factor-1 (XAF1) antagonizes XIAP-mediated caspase inhibition. XAF1 also serves as a tumor-suppressor gene, and loss of XAF1 expression correlates with tumor progression. This study investigated whether XAF1 missense single-nucleotide polymorphisms (SNPs) are associated with the development of papillary thyroid cancer (PTC) and their clinicopathological features in a Korean population. Eighty-nine cases of PTC and 276 controls were enrolled. Two missense SNPs [rs34195599 (Glu85Gly) and rs2271232 (Arg132His)] in XAF1 were genotyped using direct sequencing. The SNPStats, SNPAnalyzer, Helixtree, and Haploview version 4.2 programs were used to evaluate genetic data. Multiple logistic regression models were used to determine odds ratios (ORs), 95% confidence intervals (CIs), and p-values. Missense SNP rs34195599 was weakly-associated with the development of PTC (p=0.046 in genotypic distributions; p=0.048 in allelic distributions). For the clinicopathological features, rs34195599 was strongly related to multifocality [unifocality (A/G, 1.7%) vs. multifocality (A/G, 16.7%), OR=11.44, 95% CI=1.27-103.26, p=0.015 in genotypic distributions] [unifocality (G, 0.8%) vs. multifocality (G, 8.3%), OR=10.64, 95% CI=1.21-93.23, p=0.017 in allelic distributions] and location [one lobe (A/G, 1.6%) vs. both lobes (A/G, 19.2%), OR=15.63, 95% CI=1.62-150.46, p=0.008 in genotypic distributions] [one lobe (G, 0.8%) vs. both lobes (G, 9.6%), OR=13.30, 95% CI=1.51-116.82, p=0.009 in allelic distributions]. Our data suggest that the G allele of rs34195599 of XAF1 may be a risk factor for the clinicopathological features of PTC, especially for multifocality and location (both lobes).

Ju JH, Yang W, Oh S, et al.
HER2 stabilizes survivin while concomitantly down-regulating survivin gene transcription by suppressing Notch cleavage.
Biochem J. 2013; 451(1):123-34 [PubMed] Related Publications
In breast cancer, the HER2 (human epidermal growth factor receptor 2) receptor tyrosine kinase is associated with extremely poor prognosis and survival. Notch signalling has a key role in cell-fate decisions, especially in cancer-initiating cells. The Notch intracellular domain produced by Notch cleavage is translocated to the nucleus where it activates transcription of target genes. To determine the combinatory effect of HER2 and Notch signalling in breast cancer, we investigated the effect of HER2 on Notch-induced cellular phenomena. We found the down-regulation of Notch-dependent transcriptional activity by HER2 overexpression. Also, the HER2/ERK (extracellular-signal-regulated kinase) signal pathway down-regulated the activity of γ-secretase. When we examined the protein level of Notch target genes in HER2-overexpressing cells, we observed that the level of survivin, downstream of Notch, increased in HER2 cells. We found that activation of ERK resulted in a decrease in XAF1 [XIAP (X-linked inhibitor of apoptosis)-associated factor 1] which reduced the formation of the XIAP-XAF1 E3 ligase complex to ubiquitinate survivin. In addition, Thr(34) of survivin was shown to be the most important residue in determining survivin stability upon phosphorylation after HER2/Akt/CDK1 (cyclin-dependent kinase 1)-cyclin B1 signalling. The results of the present study show the combinatorial effects of HER2 and Notch during breast oncogenesis.

Kim KS, Choi KJ, Bae S
Interferon-gamma enhances radiation-induced cell death via downregulation of Chk1.
Cancer Biol Ther. 2012; 13(11):1018-25 [PubMed] Free Access to Full Article Related Publications
Interferon-gamma (IFNγ) is a cytokine with roles in immune responses as well as in tumor control. Interferon is often used in cancer treatment together with other therapies. Here we report a novel approach to enhancement of cancer cell killing by combined treatment of IFNγ with ionizing radiation. We found that IFNγ treatment alone in HeLa cells induced phosphorylation of Chk1 in a time- and dose-dependent manner, and resulted in cell arrest. Moreover IFNγ treatment was correlated with attenuation of Chk1 as the treatment shortened protein half-life of Chk1. As Chk1 is an essential cell cycle regulator for viability after DNA damage, attenuation of Chk1 by IFNγ pre-treatment in HeLa cells resulted in increased cell death following ionizing radiation about 2-folds than ionizing radiation treatment alone whereas IFNγ treatment alone had little effect on cell death. X-linked inhibitor of apoptosis-associated factor 1 (XAF1), an IFN-induced gene, seems to partly regulate IFNγ-induced Chk1 destabilization and radiation sensitivity because transient depletion of XAF1 by siRNA prevented IFNγ-induced Chk1 attenuation and partly protected cells from IFNγ-enhanced radiation cell killing. Therefore the results provide a novel rationale to combine IFNγ pretreatment and DNA-damaging anti-cancer drugs such as ionizing radiation to enhance cancer cell killing.

Chen XY, He QY, Guo MZ
XAF1 is frequently methylated in human esophageal cancer.
World J Gastroenterol. 2012; 18(22):2844-9 [PubMed] Free Access to Full Article Related Publications
AIM: To explore epigenetic changes in the gene encoding X chromosome-linked inhibitor of apoptosis-associated factor 1 (XAF1) during esophageal carcinogenesis.
METHODS: Methylation status of XAF1 was detected by methylation-specific polymerase chain reaction (MSP) in four esophageal cancer cell lines (KYSE30, KYSE70, BIC1 and partially methylated in TE3 cell lines), nine cases of normal mucosa, 72 cases of primary esophageal cancer and matched adjacent tissue. XAF1 expression was examined by semi-quantitative reverse transcriptional polymerase chain reaction and Western blotting before and after treatment with 5-aza-deoxycytidine (5-aza-dc), a demethylating agent. To investigate the correlation of XAF1 expression and methylation status in primary esophageal cancer, immunohistochemistry for XAF1 expression was performed in 32 cases of esophageal cancer and matched adjacent tissue. The association of methylation status and clinicopathological data was analyzed by logistic regression.
RESULTS: MSP results were as follows: loss of XAF1 expression was found in three of four esophageal cell lines with promoter region hypermethylation (completely methylated in KYSE30, KYSE70 and BIC1 cell lines and partially in TE3 cells); all nine cases of normal esophageal mucosa were unmethylated; and 54/72 (75.00%) samples from patients with esophageal cancer were methylated, and 25/72 (34.70%) matched adjacent tissues were methylated (75.00% vs 34.70%, χ(2) = 23.5840, P = 0.000). mRNA level of XAF1 measured with semi-quantitative reverse transcription polymerase chain reaction was detectable only in TE3 cells, and no expression was detected in KYSE30, KYSE70 or BIC1 cells. Protein expression was not observed in KYSE30 cells by Western blotting before treatment with 5-aza-dc. After treatment, mRNA level of XAF1 was detectable in KYSE30, KYSE70 and BIC1 cells. Protein expression was detected in KYSE30 after treatment with 5-aza-dc. Immunohistochemistry was performed on 32 cases of esophageal cancer and adjacent tissue, and demonstrated XAF1 in the nucleus and cytoplasm. XAF1 staining was found in 20/32 samples of adjacent normal tissue but was present in only 8/32 samples of esophageal cancer tissue (χ(2)= 9.143, P = 0.002). XAF1 expression was decreased in cancer samples compared with adjacent tissues. In 32 cases of esophageal cancer, 24/32 samples were methylated, and 8/32 esophageal cancer tissues were unmethylated. XAF1 staining was found in 6/8 samples of unmethylated esophageal cancer and 2/24 samples of methylated esophageal cancer tissue. XAF1 staining was inversely correlated with XAF1 promoter region methylation (Fisher's exact test, P = 0.004). Regarding methylation status and clinicopathological data, no significant differences were found in sex, age, tumor size, tumor stage, or metastasis with respect to methylation of XAF1 for the 72 tissue samples from patients with esophageal cancer.
CONCLUSION: XAF1 is frequently methylated in esophageal cancer, and XAF1 expression is regulated by promoter region hypermethylation.

Chen YB, Shu J, Yang WT, et al.
XAF1 as a prognostic biomarker and therapeutic target in squamous cell lung cancer.
Chin Med J (Engl). 2011; 124(20):3238-43 [PubMed] Related Publications
BACKGROUND: X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) is a new tumor suppressor. Low expression of XAF1 is associated with poor prognosis of human cancers. However, the effect of XAF1 on lung cancer remains unknown. In this study, we investigated the expression of XAF1 and its role in squamous cell lung cancer.
METHODS: Cancer tissues, cancer adjacent tissues and normal lung tissues were collected from 51 cases of squamous cell lung cancer. The expression of XAF1 mRNA was determined by reverse transcription-polymerase chain reaction (RT-PCR). The expression of XAF1 protein was determined by Western blotting and immunohistochemical staining. Ad5/F35-XAF1 virus was generated. Cell proliferation and apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and flow cytometry (FACS), respectively.
RESULTS: The levels of XAF1 protein and mRNA in cancer tissues were significantly lower than those in cancer adjacent and normal lung tissues (P < 0.05). The low expression of XAF1 was associated with tumor grade, disease stage, differentiation status and lymph node metastasis in squamous cell lung cancer patients. The restoration of XAF1 expression mediated by Ad5/F35-XAF1 virus significantly inhibited cell proliferation and induced apoptosis in a dose- and time-dependent manner.
CONCLUSION: XAF1 is a valuable prognostic marker in squamous cell lung cancer and may be a potential candidate gene for lung cancer therapy.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. XAF1, Cancer Genetics Web: http://www.cancer-genetics.org/XAF1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 30 August, 2019     Cancer Genetics Web, Established 1999