Gene Summary

Gene:SRD5A1; steroid 5 alpha-reductase 1
Aliases: S5AR 1
Summary:Steroid 5-alpha-reductase (EC catalyzes the conversion of testosterone into the more potent androgen, dihydrotestosterone (DHT). Also see SRD5A2 (MIM 607306).[supplied by OMIM, Mar 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:3-oxo-5-alpha-steroid 4-dehydrogenase 1
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (49)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Xenograft Models
  • Treatment Failure
  • Hydroxyprostaglandin Dehydrogenases
  • Receptors, Progesterone
  • Androgens
  • Steroids
  • Cancer Gene Expression Regulation
  • Risk Factors
  • Orchiectomy
  • Washington
  • Gene Expression Profiling
  • Immunohistochemistry
  • Enzymologic Gene Expression Regulation
  • Disease Progression
  • Membrane Proteins
  • Polycystic Ovary Syndrome
  • Androgen Antagonists
  • Messenger RNA
  • Adolescents
  • Isoenzymes
  • Dihydrotestosterone
  • Biomarkers, Tumor
  • Chromosome 5
  • 3-Oxo-5-alpha-Steroid 4-Dehydrogenase
  • Hydroxysteroid Dehydrogenases
  • Prostate Cancer
  • Transcriptome
  • Androgen Receptors
  • Testosterone
  • Signal Transduction
  • Prostate-Specific Antigen
  • Breast Cancer
  • Aldo-Keto Reductase Family 1 Member C3
  • Cell Proliferation
  • Tumor Burden
  • Case-Control Studies
  • Genotype
  • Prostatic Neoplasms, Castration-Resistant
  • 3-Hydroxysteroid Dehydrogenases
  • Single Nucleotide Polymorphism
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SRD5A1 (cancer-related)

Xie ZC, Li TT, Gan BL, et al.
Investigation of miR-136-5p key target genes and pathways in lung squamous cell cancer based on TCGA database and bioinformatics analysis.
Pathol Res Pract. 2018; 214(5):644-654 [PubMed] Related Publications
BACKGROUND: Lung squamous cell cancer (LUSC) is a common but challenging malignancy. It is important to illuminate the molecular mechanism of LUSC. Thus, we aim to explore the molecular mechanism of miR-136-5p in relation to LUSC.
METHODS: We used the Cancer Genome Atlas (TCGA) database to investigate the expression of miR-136-5p in relation to LUSC. Then, we identified the possible miR-136-5p target genes through intersection of the predicted miR-136-5p target genes and LUSC upregulated genes from TCGA. Bioinformatics analysis was performed to determine the key miR-136-5p targets and pathways associated with LUSC. Finally, the expression of hub genes, correlation between miR-136-5p and hub genes, and expected significance of hub genes were evaluated via the TCGA and Genotype-Tissue Expression (GTEx) project.
RESULTS: MiR-136-5p was significantly downregulated in LUSC patients. Glucuronidation, glucuronosyltransferase, and the retinoic acid metabolic process were the most enriched metabolic interactions in LUSC patients. Ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and retinol metabolism were identified as crucial pathways. Seven hub genes (UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A10, SRD5A1, and ADH7) were found to be upregulated, and UGT1A1, UGT1A3, UGT1A6, UGT1A7, and ADH7 were negatively correlated with miR-136-5p. UGT1A7 and ADH7 were the most significantly involved miR-136-5p target genes, and high expression of these genes was correlated with better overall survival and disease-free survival of LUSC patients.
CONCLUSIONS: Downregulated miR-136-5p may target UGT1A7 and ADH7 and participate in ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and retinol metabolism. High expression of UGT1A7 and ADH7 may indicate better prognosis of LUSC patients.

Hata S, Ise K, Azmahani A, et al.
Expression of AR, 5αR1 and 5αR2 in bladder urothelial carcinoma and relationship to clinicopathological factors.
Life Sci. 2017; 190:15-20 [PubMed] Related Publications
AIMS: Bladder urothelial carcinoma is increasing in incidence with age and its prognosis could become worse when accompanied with metastasis. Effective treatment of these advanced patients is required and it becomes important to understand its underlying biology of this neoplasm, especially with regard to its biological pathways. A potential proposed pathway is androgen receptor (AR)-mediated intracellular signaling but the details have remained relatively unexplored.
MAIN METHODS: The expression of AR, 5α-reductase type1 (5αR1) and 5α-reductase type2 (5αR2) were examined in the bladder cancer cell line T24 and surgical pathology specimens. We also evaluated the status of androgen related cell proliferation and migration using the potent, non-aromatizable androgen agonist 5α-dihydrotestosterone (DHT).
KEY FINDINGS: DHT treatment significantly increased AR mRNA expression level, but not those of 5αR1 and 5αR2 in T24 cells. DHT also suppressed cellular migration with weaker and opposite effects on cell proliferation. A significant inverse correlation was detected between pT stage and AR, 5αR1 and 5αR2 immunoreactivity.
SIGNIFICANCE: Inverse correlations detected between tumor grade and AR/androgen metabolizing enzyme also suggested that the loss of AR and androgen-producing enzymes could be associated with tumor progression. Effects of DHT on cells also suggest that androgens may regulate cellular behavior.

Audet-Walsh É, Yee T, Tam IS, Giguère V
Inverse Regulation of DHT Synthesis Enzymes 5α-Reductase Types 1 and 2 by the Androgen Receptor in Prostate Cancer.
Endocrinology. 2017; 158(4):1015-1021 [PubMed] Related Publications
5α-Reductase types 1 and 2, encoded by SRD5A1 and SRD5A2, are the two enzymes that can catalyze the conversion of testosterone to dihydrotestosterone, the most potent androgen receptor (AR) agonist in prostate cells. 5α-Reductase type 2 is the predominant isoform expressed in the normal prostate. However, its expression decreases during prostate cancer (PCa) progression, whereas SRD5A1 increases, and the mechanism underlying this transcriptional regulatory switch is still unknown. Interrogation of SRD5A messenger RNA expression in three publicly available data sets confirmed that SRD5A1 is increased in primary and metastatic PCa compared with nontumoral prostate tissues, whereas SRD5A2 is decreased. Activation of AR, a major oncogenic driver of PCa, induced the expression of SRD5A1 from twofold to fourfold in three androgen-responsive PCa cell lines. In contrast, AR repressed SRD5A2 expression in this context. Chromatin-immunoprecipitation studies established that AR is recruited to both SRD5A1 and SRD5A2 genes following androgen stimulation but initiates transcriptional activation only at SRD5A1 as monitored by recruitment of RNA polymerase II and the presence of the H3K27Ac histone mark. Furthermore, we showed that the antiandrogens bicalutamide and enzalutamide block the AR-mediated regulation of both SRD5A1 and SRD5A2, highlighting an additional mechanism explaining their beneficial effects in patients. In summary, we identified an AR-dependent transcriptional regulation that explains the differential expression of 5α-reductase types 1 and 2 during PCa progression. Our work thus defines a mechanism by which androgens control their own synthesis via differential regulatory control of the expression of SRD5A1 and SRD5A2.

Sinreih M, Štupar S, Čemažar L, et al.
STAR and AKR1B10 are down-regulated in high-grade endometrial cancer.
J Steroid Biochem Mol Biol. 2017; 171:43-53 [PubMed] Related Publications
Endometrial cancer is the most frequent gynecological malignancy in the developed world. The majority of cases are estrogen dependent, and are associated with diminished protective effects of progesterone. Endometrial cancer is also related to enhanced inflammation and decreased differentiation. In our previous studies, we examined the expression of genes involved in estrogen and progesterone actions in inflammation and tumor differentiation, in tissue samples from endometrial cancer and adjacent control endometrium. The aims of the current study were to examine correlations between gene expression and several demographic characteristics, and to evaluate changes in gene expression with regard to histopathological and clinical characteristics of 51 patients. We studied correlations and differences in expression of 38 genes involved in five pathophysiological processes: (i) estrogen-stimulated proliferation; (ii) estrogen-dependent carcinogenesis; (iii) diminished biosynthesis of progesterone: (iv) enhanced formation of progesterone metabolites; and (v) increased inflammation and decreased differentiation. Spearman correlation coefficient analysis shows that expression of PAQR7 correlates with age, expression of SRD5A1, AKR1B1 and AKR1B10 correlate with body mass, while expression of SRD5A1 and AKR1B10 correlate with body mass index. When patients with endometrial cancer were stratified based on menopausal status, histological grade, myometrial invasion, lymphovascular invasion, and FIGO stage, Mann-Whitney U tests revealed significantly decreased expression of STAR (4.4-fold; adjusted p=0.009) and AKR1B10 (9-fold; adjusted p=0.003) in high grade versus low grade tumors. Lower levels of STAR might lead to decreased de-novo steroid hormone synthesis and tumor differentiation, and lower levels of AKR1B10 to diminished elimination of toxic electrophilic carbonyl compounds in high-grade endometrial cancer. These data thus reveal the potential of STAR and AKR1B10 as prognostic biomarkers, which calls for further validation at the protein level.

Chang WC, Huang SF, Lee YM, et al.
Cholesterol import and steroidogenesis are biosignatures for gastric cancer patient survival.
Oncotarget. 2017; 8(1):692-704 [PubMed] Free Access to Full Article Related Publications
Androgens, estrogens, progesterone and related signals are reported to be involved in the pathology of gastric cancer. However, varied conclusions exist based on serum hormone levels, receptor expressions, and in vitro or in vivo studies. This report used a web-based gene survival analyzer to evaluate biochemical processes, including cholesterol importing via lipoprotein/receptors (L/R route), steroidogenic enzymes, and steroid receptors, in gastric cancer patients prognosis. The sex hormone receptors (androgen receptor, progesterone receptor, and estrogen receptor ESR1 or ESR2), L/R route (low/high-density lipoprotein receptors, LDLR/LRP6/SR-B1 and lipoprotein lipase, LPL) and steroidogenic enzymes (CYP11A1, HSD3B1, CYP17, HSD17B1, HSD3B1, CYP19A1 and SRD5A1) were associated with 5-year survival of gastric cancer patients. The AR, PR, ESR1 and ESR2 are progression promoters, as are the L/R route LDLR, LRP6, SR-B1 and LPL. It was found that CYP11A1, HSD3B1, CYP17, HSD17B1 and CYP19A1 promote progression, but dihydrotestosterone (DHT) converting enzyme SRD5A1 suppresses progression. Analyzing steroidogenic lipidome with a hazard ratio score algorithm found that CYP19A1 is the progression confounder in surgery, HER2 positive or negative patients. Finally, in the other patient cohort from TCGA, CYP19A1 was expressed higher in the tumor compared to that in normal counterparts, and also promoted progression. Lastly, exemestrane (type II aromatase inhibitor) dramatically suppress GCa cell growth in pharmacological tolerable doses in vitro. This work depicts a route-specific outside-in delivery of cholesterol to promote disease progression, implicating a host-to-tumor macroenvironmental regulation. The result indicating lipoprotein-mediated cholesterol entry and steroidogenesis are GCa progression biosignatures. And the exemestrane clinical trial in GCa patients of unmet medical needs is suggested.

Marti N, Galván JA, Pandey AV, et al.
Genes and proteins of the alternative steroid backdoor pathway for dihydrotestosterone synthesis are expressed in the human ovary and seem enhanced in the polycystic ovary syndrome.
Mol Cell Endocrinol. 2017; 441:116-123 [PubMed] Related Publications
Recently, dihydrotestosterone biosynthesis through the backdoor pathway has been implicated for the human testis in addition to the classic pathway for testosterone (T) synthesis. In the human ovary, androgen precursors are crucial for estrogen synthesis and hyperandrogenism in pathologies such as the polycystic ovary syndrome is partially due to ovarian overproduction. However, a role for the backdoor pathway is only established for the testis and the adrenal, but not for the human ovary. To investigate whether the backdoor pathway exists in normal and PCOS ovaries, we performed specific gene and protein expression studies on ovarian tissues. We found aldo-keto reductases (AKR1C1-1C4), 5α-reductases (SRD5A1/2) and retinol dehydrogenase (RoDH) expressed in the human ovary, indicating that the ovary might produce dihydrotestosterone via the backdoor pathway. Immunohistochemical studies showed specific localization of these proteins to the theca cells. PCOS ovaries show enhanced expression, what may account for the hyperandrogenism.

Price DK, Chau CH, Till C, et al.
Association of androgen metabolism gene polymorphisms with prostate cancer risk and androgen concentrations: Results from the Prostate Cancer Prevention Trial.
Cancer. 2016; 122(15):2332-40 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Prostate cancer is highly influenced by androgens and genes. The authors investigated whether genetic polymorphisms along the androgen biosynthesis and metabolism pathways are associated with androgen concentrations or with the risk of prostate cancer or high-grade disease from finasteride treatment.
METHODS: A nested case-control study from the Prostate Cancer Prevention Trial using data from men who had biopsy-proven prostate cancer (cases) and a group of biopsy-negative, frequency-matched controls was conducted to investigate the association of 51 single nucleotide polymorphisms (SNPs) in 12 genes of the androgen pathway with overall (total), low-grade, and high-grade prostate cancer incidence and serum hormone concentrations.
RESULTS: There were significant associations of genetic polymorphisms in steroid 5α-reductase 1 (SRD5A1) (reference SNPs: rs3736316, rs3822430, rs1560149, rs248797, and rs472402) and SRD5A2 (rs2300700) with the risk of high-grade prostate cancer in the placebo arm of the Prostate Cancer Prevention Trial; 2 SNPs were significantly associated with an increased risk (SRD5A1 rs472402 [odds ratio, 1.70; 95% confidence interval, 1.05-2.75; Ptrend = .03] and SRD5A2 rs2300700 [odds ratio, 1.94; 95% confidence interval, 1.19-3.18; Ptrend = .01]). Eleven SNPs in SRD5A1, SRD5A2, cytochrome P450 family 1, subfamily B, polypeptide 1 (CYP1B1), and CYP3A4 were associated with modifying the mean concentrations of serum androgen and sex hormone-binding globulin; and 2 SNPs (SRD5A1 rs824811 and CYP1B1 rs10012; Ptrend < .05) consistently and significantly altered all androgen concentrations. Several SNPs (SRD5A1 rs3822430, SRD5A2 rs2300700, CYP3A43 rs800672, and CYP19 rs700519; Ptrend < .05) were significantly associated with both circulating hormone levels and prostate cancer risk.
CONCLUSIONS: Germline genetic variations of androgen-related pathway genes are associated with serum androgen concentrations and the risk of prostate cancer. Further studies to examine the functional consequence of novel causal variants are warranted. Cancer 2016;122:2332-2340. © 2016 American Cancer Society.

Kavlashvili T, Jia Y, Dai D, et al.
Inverse Relationship between Progesterone Receptor and Myc in Endometrial Cancer.
PLoS One. 2016; 11(2):e0148912 [PubMed] Free Access to Full Article Related Publications
Endometrial cancer, the most common gynecologic malignancy, is a hormonally-regulated disease. Response to progestin therapy positively correlates with hormone receptor expression, in particular progesterone receptor (PR). However, many advanced tumors lose PR expression. We recently reported that the efficacy of progestin therapy can be significantly enhanced by combining progestin with epigenetic modulators, which we term "molecularly enhanced progestin therapy." What remained unclear was the mechanism of action and if estrogen receptor α (ERα), the principle inducer of PR, is necessary to restore functional expression of PR via molecularly enhanced progestin therapy. Therefore, we modeled advanced endometrial tumors that have lost both ERα and PR expression by generating ERα-null endometrial cancer cell lines. CRISPR-Cas9 technology was used to delete ERα at the genomic level. Our data demonstrate that treatment with a histone deacetylase inhibitor (HDACi) was sufficient to restore functional PR expression, even in cells devoid of ERα. Our studies also revealed that HDACi treatment results in marked downregulation of the oncogene Myc. We established that PR is a negative transcriptional regulator of Myc in endometrial cancer in the presence or absence of ERα, which is in contrast to studies in breast cancer cells. First, estrogen stimulation augmented PR expression and decreased Myc in endometrial cancer cell lines. Second, progesterone increased PR activity yet blunted Myc mRNA and protein expression. Finally, overexpression of PR by adenoviral transduction in ERα-null endometrial cancer cells significantly decreased expression of Myc and Myc-regulated genes. Analysis of the Cancer Genome Atlas (TCGA) database of endometrial tumors identified an inverse correlation between PR and Myc mRNA levels, with a corresponding inverse correlation between PR and Myc downstream transcriptional targets SRD5A1, CDK2 and CCNB1. Together, these data reveal a previously unanticipated inverse relationship between the tumor suppressor PR and the oncogene Myc in endometrial cancer.

Shiota M, Fujimoto N, Yokomizo A, et al.
SRD5A gene polymorphism in Japanese men predicts prognosis of metastatic prostate cancer with androgen-deprivation therapy.
Eur J Cancer. 2015; 51(14):1962-9 [PubMed] Related Publications
AIM: De novo androgen synthesis is thought to be involved in the progression to castration-resistant prostate cancer (CRPC) during androgen-deprivation therapy (ADT). During androgen synthesis, 5α-reductase encoded by SRD5A catalyses testosterone into more active dihydrotestosterone and may be involved in the progression to CRPC. Then, this study aimed to reveal the association between genetic variations in SRD5A and the prognosis in metastatic prostate cancer.
METHODS: We studied the polymorphisms rs518673 and rs166050 in SRD5A1, and rs12470143, rs523349, rs676033 and rs2208532 in SRD5A2 as well as the time to CRPC progression and overall survival in 104 patients with metastatic prostate cancer that had undergone primary ADT. The association between the polymorphisms and the progression to CRPC as well as overall survival was examined.
RESULTS: Patients carrying the more active GG genotype in SRD5A2 rs523349 exhibited a higher risk of the progression (hazard ration [95% confidence interval], 1.93 [1.14-3.14], p=0.016) and death (hazard ration [95% confidence interval], 2.14 [1.16-3.76], p=0.016), compared with less active GC/CC genotypes in SRD5A2 rs523349.
CONCLUSIONS: High 5α-reductase activity due to the polymorphism in SRD5A2 may contribute to resistance to ADT. Furthermore, SRD5A2 rs523349 polymorphism may be a promising biomarker for metastatic prostate cancer patients treated with primary ADT and a molecular target for advanced prostate cancer.

Henríquez-Hernández LA, Valenciano A, Foro-Arnalot P, et al.
Genetic variations in genes involved in testosterone metabolism are associated with prostate cancer progression: A Spanish multicenter study.
Urol Oncol. 2015; 33(7):331.e1-7 [PubMed] Related Publications
BACKGROUND: Prostate cancer (PCa) is an androgen-dependent disease. Nonetheless, the role of single nucleotide polymorphisms (SNPs) in genes encoding androgen metabolism remains an unexplored area.
PURPOSE: To investigate the role of germline variations in cytochrome P450 17A1 (CYP17A1) and steroid-5α-reductase, α-polypeptides 1 and 2 (SRD5A1 and SRD5A2) genes in PCa.
PATIENTS AND METHODS: In total, 494 consecutive Spanish patients diagnosed with nonmetastatic localized PCa were included in this multicenter study and were genotyped for 32 SNPs in SRD5A1, SRD5A2, and CYP17A1 genes using a Biotrove OpenArray NT Cycler. Clinical data were available. Genotypic and allelic frequencies, as well as haplotype analyses, were determined using the web-based environment SNPator. All additional statistical analyses comparing clinical data and SNPs were performed using PASW Statistics 15.
RESULTS: The call rate obtained (determined as the percentage of successful determinations) was 97.3% of detection. A total of 2 SNPs in SRD5A1-rs3822430 and rs1691053-were associated with prostate-specific antigen level at diagnosis. Moreover, G carriers for both SNPs were at higher risk of presenting initial prostate-specific antigen levels>20ng/ml (Exp(B) = 2.812, 95% CI: 1.397-5.657, P = 0.004) than those who are AA-AA carriers. Haplotype analyses showed that patients with PCa nonhomozygous for the haplotype GCTTGTAGTA were at an elevated risk of presenting bigger clinical tumor size (Exp(B) = 3.823, 95% CI: 1.280-11.416, P = 0.016), and higher Gleason score (Exp(B) = 2.808, 95% CI: 1.134-6.953, P = 0.026).
CONCLUSIONS: SNPs in SRD5A1 seem to affect the clinical characteristics of Spanish patients with PCa.

Fokidis HB, Yieng Chin M, Ho VW, et al.
A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice.
J Steroid Biochem Mol Biol. 2015; 150:35-45 [PubMed] Related Publications
Dietary factors continue to preside as dominant influences in prostate cancer prevalence and progression-free survival following primary treatment. We investigated the influence of a low carbohydrate diet, compared to a typical Western diet, on prostate cancer (PCa) tumor growth in vivo. LNCaP xenograft tumor growth was studied in both intact and castrated mice, representing a more advanced castration resistant PCa (CRPC). No differences in LNCaP tumor progression (total tumor volume) with diet was observed for intact mice (P = 0.471) however, castrated mice on the Low Carb diet saw a statistically significant reduction in tumor growth rate compared with Western diet fed mice (P = 0.017). No correlation with serum PSA was observed. Steroid profiles, alongside serum cholesterol and cholesteryl ester levels, were significantly altered by both diet and castration. Specifically, DHT concentration with the Low Carb diet was 58% that of the CRPC-bearing mice on the Western diet. Enzymes in the steroidogenesis pathway were directly impacted and tumors isolated from intact mice on the Low Carb diet had higher AKR1C3 protein levels and lower HSD17B2 protein levels than intact mice on the Western diet (ARK1C3: P = 0.074; HSD17B2: P = 0.091, with α = 0.1). In contrast, CRPC tumors from mice on Low Carb diets had higher concentrations of both HSD17B2 (P = 0.016) and SRD5A1 (P = 0.058 with α = 0.1) enzymes. There was no correlation between tumor growth in castrated mice for Low Carb diet versus Western diet and (a) serum insulin (b) GH serum levels (c) insulin receptor (IR) or (d) IGF-1R in tumor tissue. Intact mice fed Western diet had higher serum insulin which was associated with significantly higher blood glucose and tumor tissue IR. We conclude that both diet and castration have a significant impact on the endocrinology of mice bearing LNCaP xenograft tumors. The observed effects of diet on cholesterol and steroid regulation impact tumor tissue DHT specifically and are likely to be mechanistic drivers behind the observed tumor growth suppression.

Sinreih M, Anko M, Zukunft S, et al.
Important roles of the AKR1C2 and SRD5A1 enzymes in progesterone metabolism in endometrial cancer model cell lines.
Chem Biol Interact. 2015; 234:297-308 [PubMed] Related Publications
Endometrial cancer is the most frequently diagnosed gynecological malignancy. It is associated with prolonged exposure to estrogens that is unopposed by progesterone, whereby enhanced metabolism of progesterone may decrease its protective effects, as it can deprive progesterone receptors of their active ligand. Furthermore, the 5α-pregnane metabolites formed can stimulate proliferation and may thus contribute to carcinogenesis. The aims of our study were to: (1) identify and quantify progesterone metabolites formed in the HEC-1A and Ishikawa model cell lines of endometrial cancer; and (2) pinpoint the enzymes involved in progesterone metabolism, and delineate their roles. Progesterone metabolism studies combined with liquid chromatography-tandem mass spectrometry enabled identification and quantification of the metabolites formed in these cells. Further quantitative PCR analysis and small-interfering-RNA-mediated gene silencing identified individual progesterone metabolizing enzymes and their relevant roles. In Ishikawa and HEC-1A cells, progesterone was metabolized mainly to 20α-hydroxy-pregn-4-ene-3-one, 20α-hydroxy-5α-pregnane-3-one, and 5α-pregnane-3α/β,20α-diol. The major difference between these cell lines was rate of progesterone metabolism, which was faster in HEC-1A cells. In the Ishikawa and HEC-1A cells, expression of AKR1C2 was 110-fold and 6800-fold greater, respectively, than expression of AKR1C1, which suggests that 20-ketosteroid reduction of 5α-pregnanes and 4-pregnenes is catalyzed mainly by AKR1C2. AKR1C1/AKR1C2 gene silencing showed decreased progesterone metabolism in both cell lines, thus further supporting the significant role of AKR1C2. SRD5A1 was also expressed in these cells, and its silencing confirmed that 5α-reduction is catalyzed by 5α-reductase type 1. Silencing of SRD5A1 also had the most pronounced effects, with decreased rate of progesterone metabolism, and consequently higher concentrations of unmetabolized progesterone. Our data confirm that in model cell lines of endometrial cancer, AKR1C2 and SRD5A1 have crucial roles in progesterone metabolism, and may represent novel targets for treatment.

Penney KL, Sinnott JA, Tyekucheva S, et al.
Association of prostate cancer risk variants with gene expression in normal and tumor tissue.
Cancer Epidemiol Biomarkers Prev. 2015; 24(1):255-60 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Numerous germline genetic variants are associated with prostate cancer risk, but their biologic role is not well understood. One possibility is that these variants influence gene expression in prostate tissue. We therefore examined the association of prostate cancer risk variants with the expression of genes nearby and genome-wide.
METHODS: We generated mRNA expression data for 20,254 genes with the Affymetrix GeneChip Human Gene 1.0 ST microarray from normal prostate (N = 160) and prostate tumor (N = 264) tissue from participants of the Physicians' Health Study and Health Professionals Follow-up Study. With linear models, we tested the association of 39 risk variants with nearby genes and all genes, and the association of each variant with canonical pathways using a global test.
RESULTS: In addition to confirming previously reported associations, we detected several new significant (P < 0.05) associations of variants with the expression of nearby genes including C2orf43, ITGA6, MLPH, CHMP2B, BMPR1B, and MTL5. Genome-wide, five genes (MSMB, NUDT11, RBPMS2, NEFM, and KLHL33) were significantly associated after accounting for multiple comparisons for each SNP (P < 2.5 × 10(-6)). Many more genes had an FDR <10%, including SRD5A1 and PSCA, and we observed significant associations with pathways in tumor tissue.
CONCLUSIONS: The risk variants were associated with several genes, including promising prostate cancer candidates and lipid metabolism pathways, suggesting mechanisms for their impact on disease. These genes should be further explored in biologic and epidemiologic studies.
IMPACT: Determining the biologic role of these variants can lead to improved understanding of prostate cancer etiology and identify new targets for chemoprevention.

von Wahlde MK, Hülsewig C, Ruckert C, et al.
The anti-androgen drug dutasteride renders triple negative breast cancer cells more sensitive to chemotherapy via inhibition of HIF-1α-/VEGF-signaling.
Gynecol Endocrinol. 2015; 31(2):160-4 [PubMed] Related Publications
BACKGROUND: Triple negative breast cancer (TNBC) is characterized by lack of expression of both estrogen and progesterone receptor as well as lack of amplification of HER2. Patients with TNBC carry an unfavorable prognosis compared to other breast cancer subtypes given that endocrine or HER2 targeted therapies are not effective, rendering chemotherapy the sole effective treatment option to date. Therefore, there is a high demand for additional novel treatment options.
FINDINGS: We previously published a list of genes showing both higher gene expression rates in TNBC and, in addition, are known to encode targets of non-oncologic drugs. SRD5A1, which encodes the type-1 isoform of the steroid-5alpha-reductase, which is involved in androgen metabolism, was found to be one of these genes. Dutasteride is a dual blocker of both the type-1 and type-2 isoform of SRD5A1 and is indicated in the treatment of benign prostate hyperplasia. Treatment of TNBC cell lines with dutasteride was associated with a dose-dependent decrease in cell viability, altered protein expression of VEGF and HIF-1α and increased chemosensitivity.
CONCLUSION: Our results demonstrate that the SRD5A1-corresponding anti-androgenic drug dutasteride might act as a combinatorial therapeutic option besides standard chemotherapy in highly aggressive TNBC.

Mostaghel EA, Morgan A, Zhang X, et al.
Prostate cancer characteristics associated with response to pre-receptor targeting of the androgen axis.
PLoS One. 2014; 9(10):e111545 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Factors influencing differential responses of prostate tumors to androgen receptor (AR) axis-directed therapeutics are poorly understood, and predictors of treatment efficacy are needed. We hypothesized that the efficacy of inhibiting DHT ligand synthesis would associate with intra-tumoral androgen ratios indicative of relative dependence on DHT-mediated growth.
METHODS: We characterized two androgen-sensitive prostate cancer xenograft models after androgen suppression by castration in combination with the SRD5A inhibitor, dutasteride, as well as a panel of castration resistant metastases obtained via rapid autopsy.
RESULTS: In LuCaP35 tumors (intra-tumoral T:DHT ratio 2:1) dutasteride suppressed DHT to 0.02 ng/gm and prolonged survival vs. castration alone (337 vs.152 days, HR 2.8, p = 0.0015). In LuCaP96 tumors (T:DHT 10:1), survival was not improved despite similar DHT reduction (0.02 ng/gm). LuCaP35 demonstrated higher expression of steroid biosynthetic enzymes maintaining DHT levels (5-fold higher SRD5A1, 41 fold higher, 99-fold higher RL-HSD, p<0.0001 for both), reconstitution of intra-tumoral DHT (to ∼30% of untreated tumors), and ∼2 fold increased expression of full length AR. In contrast, LuCaP96 demonstrated higher levels of steroid catabolizing enzymes (6.9-fold higher AKR1C2, 3000-fold higher UGT2B15, p = 0.002 and p<0.0001 respectively), persistent suppression of intra-tumoral DHT, and 6-8 fold induction of full length AR and the ligand independent V7 AR splice variant. Human metastases demonstrated bio-active androgen levels and AR full length and AR splice-variant expression consistent with the range observed in xenografts.
CONCLUSIONS: Intrinsic differences in basal steroidogenesis, as well as variable expression of full length and splice-variant AR, associate with response and resistance to pre-receptor AR ligand suppression. Expression of steroidogenic enzymes and AR isoforms may serve as potential biomarkers of sensitivity to potent AR-axis inhibition and should be validated in additional models.

Toren PJ, Kim S, Pham S, et al.
Anticancer activity of a novel selective CYP17A1 inhibitor in preclinical models of castrate-resistant prostate cancer.
Mol Cancer Ther. 2015; 14(1):59-69 [PubMed] Related Publications
VT-464 is a novel, nonsteroidal, small-molecule CYP17A1 inhibitor with 17,20-lyase selectivity. This study evaluates the anticancer activity of VT-464 compared with abiraterone (ABI) in castrate-resistant prostate cancer cell lines and xenograft models that are enzalutamide (ENZ)-responsive (C4-2) or ENZ-resistant (MR49C, MR49F). In vitro, androgen receptor (AR) transactivation was assessed by probasin luciferase reporter, whereas AR and AR-regulated genes and steroidogenic pathway enzymes were assessed by Western blot and/or qRT-PCR. The MR49F xenograft model was used to compare effects of oral VT-464 treatment to vehicle and abiraterone acetate (AA). Steroid concentrations were measured using LC-MS chromatography. VT-464 demonstrated a greater decrease in AR transactivation compared with ABI in C4-2 and both ENZ-resistant cell lines. At the gene and protein level, VT-464 suppressed the AR axis to a greater extent compared with ABI. Gene transcripts StAR, CYP17A1, HSD17B3, and SRD5A1 increased following treatment with ABI and to a greater extent with VT-464. In vivo, intratumoral androgen levels were significantly lower after VT-464 or AA treatment compared with vehicle, with the greatest decrease seen with VT-464. Similarly, tumor growth inhibition and PSA decrease trends were greater with VT-464 than with AA. Finally, an AR-antagonist effect of VT-464 independent of CYP17A1 inhibition was observed using luciferase reporter assays, and a direct interaction was confirmed using an AR ligand binding domain biolayer interferometry. These preclinical results suggest greater suppression of the AR axis with VT-464 than ABI that is likely due to both superior selective suppression of androgen synthesis and AR antagonism.

Robitaille CN, Rivest P, Sanderson JT
Antiandrogenic mechanisms of pesticides in human LNCaP prostate and H295R adrenocortical carcinoma cells.
Toxicol Sci. 2015; 143(1):126-35 [PubMed] Related Publications
Several pesticides suspected or known to have endocrine disrupting effects were screened for pro- or antiandrogenic properties by determining their effects on proliferation, prostatic-specific antigen (PSA) secretion and androgen receptor (AR) expression, and AR phosphorylation in androgen-dependent LNCaP human prostate cancer cells, as well as on the expression and catalytic activity of the enzyme CYP17 in H295R human adrenocortical carcinoma cells, an in vitro model of steroidogenesis. Effects on SRD5A gene expression were determined in both cell lines. Benomyl, vinclozolin, and prochloraz, but not atrazine, concentration dependently (1-30 μM) decreased dihydrotestosterone (DHT)-stimulated proliferation of LNCaP cells. All pesticides except atrazine decreased DHT-stimulated PSA secretion, AR nuclear accumulation, and AR phosphorylation on serines 81 and 213 in LNCaP cells. Benomyl and prochloraz, but not vinclozolin or atrazine, decreased levels of CYP17 gene and protein expression, as well as catalytic activity in H295R cells. In the case of prochloraz, some of these effects corresponded with cytotoxicity. H295R cells expressed AR protein and SRD5A1, but not SRD5A2 transcripts. SRD5A1 gene expression in H295R cells was increased by 10 nM DHT, whereas in LNCaP cells significant induction was observed by 0.1 nM DHT. AR protein expression in H295R cells was not increased by DHT. Vinclozolin decreased DHT-induced SRD5A1 gene expression in LNCaP, but not H295R cells, indicating a functional difference of AR between the cell lines. In conclusion, pesticides may exert antiandrogenic effects through several mechanisms that are cell type-specific, including AR antagonism and down-regulation or catalytic inhibition of androgen biosynthetic enzymes, such as CYP17 and SRD5A1.

Wan L, Tan HL, Thomas-Ahner JM, et al.
Dietary tomato and lycopene impact androgen signaling- and carcinogenesis-related gene expression during early TRAMP prostate carcinogenesis.
Cancer Prev Res (Phila). 2014; 7(12):1228-39 [PubMed] Free Access to Full Article Related Publications
Consumption of tomato products containing the carotenoid lycopene is associated with a reduced risk of prostate cancer. To identify gene expression patterns associated with early testosterone-driven prostate carcinogenesis, which are impacted by dietary tomato and lycopene, wild-type (WT) and transgenic adenocarcinoma of the mouse prostate (TRAMP) mice were fed control or tomato- or lycopene-containing diets from 4 to 10 weeks of age. Eight-week-old mice underwent sham surgery, castration, or castration followed by testosterone repletion (2.5 mg/kg/d initiated 1 week after castration). Ten-week-old intact TRAMP mice exhibit early multifocal prostatic intraepithelial neoplasia. Of the 200 prostate cancer-related genes measured by quantitative NanoString, 189 are detectable, 164 significantly differ by genotype, 179 by testosterone status, and 30 by diet type (P < 0.05). In TRAMP, expression of Birc5, Mki67, Aurkb, Ccnb2, Foxm1, and Ccne2 is greater compared with WT and is decreased by castration. In parallel, castration reduces Ki67-positive staining (P < 0.0001) compared with intact and testosterone-repleted TRAMP mice. Expression of genes involved in androgen metabolism/signaling pathways is reduced by lycopene feeding (Srd5a1) and by tomato feeding (Srd5a2, Pxn, and Srebf1). In addition, tomato feeding significantly reduced expression of genes associated with stem cell features, Aldh1a and Ly6a, whereas lycopene feeding significantly reduced expression of neuroendocrine differentiation-related genes, Ngfr and Syp. Collectively, these studies demonstrate a profile of testosterone-regulated genes associated with early prostate carcinogenesis that are potential mechanistic targets of dietary tomato components. Future studies on androgen signaling/metabolism, stem cell features, and neuroendocrine differentiation pathways may elucidate the mechanisms by which dietary tomato and lycopene impact prostate cancer risk.

Eriksen MB, Glintborg D, Nielsen MF, et al.
Testosterone treatment increases androgen receptor and aromatase gene expression in myotubes from patients with PCOS and controls, but does not induce insulin resistance.
Biochem Biophys Res Commun. 2014; 451(4):622-6 [PubMed] Related Publications
Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity is conserved in cultured myotubes (in vitro) from patients with PCOS, but the effect of testosterone on this insulin sensitivity is unknown. We investigated the effect of 7days testosterone treatment (100nmol/l) on glucose transport and gene expression levels of hormone receptors and enzymes involved in the synthesis and conversion of testosterone (HSD17B1, HSD17B2, CYP19A1, SRD5A1-2, AR, ER-α, HSD17B6 and AKR1-3) in myotubes from ten patients with PCOS and ten matched controls. Testosterone treatment significantly increased aromatase and androgen receptor gene expression levels in patients and controls. Glucose transport in myotubes was comparable in patients with PCOS vs. controls and was unchanged by testosterone treatment (p=0.21 PCOS vs. controls). These results suggest that testosterone treatment of myotubes increases the aromatase and androgen receptor gene expression without affecting insulin sensitivity and if testosterone is implicated in muscular insulin resistance in PCOS, this is by and indirect mechanism.

Sang Q, Li X, Wang H, et al.
Quantitative methylation level of the EPHX1 promoter in peripheral blood DNA is associated with polycystic ovary syndrome.
PLoS One. 2014; 9(2):e88013 [PubMed] Free Access to Full Article Related Publications
Steroid synthesis and metabolic pathways play important roles in the pathophysiology of PCOS, but until now there have been no studies on the methylation profiles of specific genes in steroid synthesis pathways that are known to be associated with PCOS. Here we used MassARRAY quantitative methylation analysis to determine the methylation levels of each CpG site or cluster in the promoters of EPHX1, SRD5A1, and CYP11A1 in 64 peripheral blood samples. We further examined the methylation level of EPHX1 in an independent cohort consisting of 116 people. Finally, we investigated the role of EPHX1 in steroidogenesis in the KGN cell line. For SRD5A1 and CYP11A1, there was no significant difference in methylation level between patients and controls. For EPHX1, however, the methylation levels of a few consecutive CpG sites and clusters were found to be significantly associated with PCOS. The methylation levels of a number of CpG clusters or sites were significantly lower in patients than in controls in the first cohort consisting of 64 people, such as clusters 13-14 (P<0.05), 15-16 (P<0.001), and 19-24 (P<0.001) and sites CpG_53 (P<0.01) and CpG_54 (P<0.05). Among differentiated methylation sites and clusters, the methylation levels of the CpG cluster 13-14 and CpG cluster 19-24 in PCOS patients were significantly lower than in controls in the second cohort of 116 people (P<0.05 for both). In addition, knockdown and overexpression experiments in KGN cells showed that EPHX1 can regulate estradiol concentrations, and this indicates a role for EPHX1 in steroidogenesis. Our study has demonstrated that methylation of the EPHX1 promoter might be associated with PCOS. This study provides direct evidence that methylation plays an important role in PCOS and demonstrates a novel role for EPHX1 in female reproduction.

Hanamura T, Niwa T, Gohno T, et al.
Possible role of the aromatase-independent steroid metabolism pathways in hormone responsive primary breast cancers.
Breast Cancer Res Treat. 2014; 143(1):69-80 [PubMed] Related Publications
Aromatase inhibitors (AIs) exert antiproliferative effects by reducing local estrogen production from androgens in postmenopausal women with hormone-responsive breast cancer. Previous reports have shown that androgen metabolites generated by the aromatase-independent enzymes, 5α-androstane-3β, 17β-diol (3β-diol), androst-5-ene-3β, and 17β-diol (A-diol), also activate estrogen receptor (ER) α. Estradiol (E2) can also reportedly be generated from estrone sulfate (E1S) pooled in the plasma. Estrogenic steroid-producing aromatase-independent pathways have thus been proposed as a mechanism of AI resistance. However, it is unclear whether these pathways are functional in clinical breast cancer. To investigate this issue, we assessed the transcriptional activities of ER in 45 ER-positive human breast cancers using the adenovirus estrogen-response element-green fluorescent protein assay and mRNA expression levels of the ER target gene, progesterone receptor, as indicators of ex vivo and in vivo ER activity, respectively. We also determined mRNA expression levels of 5α-reductase type 1 (SRD5A1) and 3β-hydroxysteroid dehydrogenase type 1 (3β-HSD type 1; HSD3B1), which produce 3β-diol from androgens, and of steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD type 1; HSD17B1), which produce E2 or A-diol from E1S or dehydroepiandrosterone sulfate. SRD5A1 and HSD3B1 expression levels were positively correlated with ex vivo and in vivo ER activities. STS and HSD17B1 expression levels were positively correlated with in vivo ER activity alone. Elevated expression levels of these steroid-metabolizing enzymes in association with high in vivo ER activity were particularly notable in postmenopausal patients. Analysis of the expression levels of steroid-metabolizing enzymes revealed positive correlations between SRD5A1 and HSD3B1, and STS and HSD17B1. These findings suggest that the SRD5A1-HSD3B1 as well as the STS-HSD17B pathways, could contributes to ER activation, especially postmenopause. These pathways might function as an alternative estrogenic steroid-producing, aromatase-independent pathways.

Lévesque É, Laverdière I, Lacombe L, et al.
Importance of 5α-reductase gene polymorphisms on circulating and intraprostatic androgens in prostate cancer.
Clin Cancer Res. 2014; 20(3):576-84 [PubMed] Related Publications
PURPOSE: Polymorphisms in the genes SRD5A1 and SRD5A2 encoding androgen biosynthetic 5α-reductase enzymes have been associated with an altered risk of biochemical recurrence after radical prostatectomy in localized prostate cancer.
EXPERIMENTAL DESIGN: To gain potential insights into SRD5A biologic effects, we examined the relationship between SRD5A prognostic markers and endogenous sex-steroid levels measured by mass spectrometry in plasma samples and corresponding prostatic tissues of patients with prostate cancer.
RESULTS: We report that five of the seven SRD5A markers differentially affect sex-steroid profiles of dihydrotestosterone and its metabolites in both the circulation and prostatic tissues of patients with prostate cancer. Remarkably, a 32% increase in intraprostatic testosterone levels was observed in the presence of the high-risk SRD5A rs2208532 polymorphism. Moreover, SRD5A2 markers were associated predominantly with circulating levels of inactive glucuronides. Indeed, the rs12470143 SRD5A2 protective allele was associated with high circulating androstane-3α, 17β-diol-17-glucuronide (3α-diol-17G) levels as opposed to lower levels of both 3α-diol-17G and androsterone-glucuronide observed with the rs2208532 SRD5A2 risk allele. Moreover, SRD5A2 rs676033 and rs523349 (V89L) risk variants, in strong linkage disequilibrium, were associated with higher circulating levels of 3α-diol-3G. The SRD5A2 rs676033 variant further correlated with enhanced intraprostatic exposure to 5α-reduced steroids (dihydrotestosterone and its metabolite 3β-diol). Similarly, the SRD5A1 rs166050C risk variant was associated with greater prostatic exposure to androsterone, whereas no association was noted with circulating steroids.
CONCLUSIONS: Our data support the association of 5α-reductase germline polymorphisms with the hormonal milieu in patients with prostate cancer. Further studies are needed to evaluate if these variants influence 5α-reductase inhibitor efficacy.

Jernberg E, Thysell E, Bovinder Ylitalo E, et al.
Characterization of prostate cancer bone metastases according to expression levels of steroidogenic enzymes and androgen receptor splice variants.
PLoS One. 2013; 8(11):e77407 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Intra-tumoral steroidogenesis and constitutive androgen receptor (AR) activity have been associated with castration-resistant prostate cancer (CRPC). This study aimed to examine if CRPC bone metastases expressed higher levels of steroid-converting enzymes than untreated bone metastases. Steroidogenic enzyme levels were also analyzed in relation to expression of constitutively active AR variants (AR-Vs) and to clinical and pathological variables.
METHODOLOGY/PRINCIPAL FINDINGS: Untreated, hormone-naïve (HN, n = 9) and CRPC bone metastases samples (n = 45) were obtained from 54 patients at metastasis surgery. Non-malignant and malignant prostate samples were acquired from 13 prostatectomy specimens. Transcript and protein levels were analyzed by real-time RT-PCR, immunohistochemistry and immunoblotting. No differences in steroidogenic enzyme levels were detected between CRPC and HN bone metastases. Significantly higher levels of SRD5A1, AKR1C2, AKR1C3, and HSD17B10 mRNA were however found in bone metastases than in non-malignant and/or malignant prostate tissue, while the CYP11A1, CYP17A1, HSD3B2, SRD5A2, and HSD17B6 mRNA levels in metastases were significantly lower. A sub-group of metastases expressed very high levels of AKR1C3, which was not due to gene amplification as examined by copy number variation assay. No association was found between AKR1C3 expression and nuclear AR staining, tumor cell proliferation or patient outcome after metastases surgery. With only one exception, high AR-V protein levels were found in bone metastases with low AKR1C3 levels, while metastases with high AKR1C3 levels primarily contained low AR-V levels, indicating distinct mechanisms behind castration-resistance in individual bone metastases.
CONCLUSIONS/SIGNIFICANCE: Induced capacity of converting adrenal-gland derived steroids into more potent androgens was indicated in a sub-group of PC bone metastases. This was not associated with CRPC but merely with the advanced stage of metastasis. Sub-groups of bone metastases could be identified according to their expression levels of AKR1C3 and AR-Vs, which might be of relevance for patient response to 2(nd) line androgen-deprivation therapy.

Seo YK, Mirkheshti N, Song CS, et al.
SULT2B1b sulfotransferase: induction by vitamin D receptor and reduced expression in prostate cancer.
Mol Endocrinol. 2013; 27(6):925-39 [PubMed] Free Access to Full Article Related Publications
An elevated tumor tissue androgen level, which reactivates androgen receptor in recurrent prostate cancer, arises from the intratumor synthesis of 5α-dihydrotestosterone through use of the precursor steroid dehydroepiandrosterone (DHEA) and is fueled by the steroidogenic enzymes 3β-hydroxysteroid dehydrogenase (3β-HSD1), aldoketoreductase (AKR1C3), and steroid 5-alpha reductase, type 1 (SRD5A1) present in cancer tissue. Sulfotransferase 2B1b (SULT2B1b) (in short, SULT2B) is a prostate-expressed hydroxysteroid SULT that converts cholesterol, oxysterols, and DHEA to 3β-sulfates. DHEA metabolism involving sulfonation by SULT2B can potentially interfere with intraprostate androgen synthesis due to reduction of free DHEA pool and, thus, conversion of DHEA to androstenedione. Here we report that in prostatectomy specimens from treatment-naive patients, SULT2B expression is markedly reduced in malignant tissue (P < .001, Mann-Whitney U test) compared with robust expression in adjacent nonmalignant glands. SULT2B was detected in formalin-fixed specimens by immunohistochemistry on individual sections and tissue array. Immunoblotting of protein lysates of frozen cancer and matched benign tissue confirmed immunohistochemistry results. An in-house-developed rabbit polyclonal antibody against full-length human SULT2B was validated for specificity and used in the analyses. Ligand-activated vitamin D receptor induced the SULT2B1 promoter in vivo in mouse prostate and increased SULT2B mRNA and protein levels in vitro in prostate cancer cells. A vitamin D receptor/retinoid X receptor-α-bound DNA element (with a DR7 motif) mediated induction of the transfected SULT2B1 promoter in calcitriol-treated cells. SULT2B knockdown caused an increased proliferation rate of prostate cancer cells upon stimulation by DHEA. These results suggest that the tumor tissue SULT2B level may partly control prostate cancer growth, and its induction in a therapeutic setting may inhibit disease progression.

Pau C, Saxena R, Welt CK
Evaluating reported candidate gene associations with polycystic ovary syndrome.
Fertil Steril. 2013; 99(6):1774-8 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: To replicate variants in candidate genes associated with polycystic ovary syndrome (PCOS) in a population of European women with PCOS and control subjects.
DESIGN: Case-control association analysis and meta-analysis.
SETTING: Major academic hospital.
PATIENT(S): Women of European ancestry with PCOS (n = 525) and controls (n = 472), aged 18-45 years.
INTERVENTION(S): Variants previously associated with PCOS in candidate gene studies were genotyped (n = 39). Metabolic, reproductive, and anthropomorphic parameters were examined as a function of the candidate variants. All genetic association analyses were adjusted for age, body mass index, and ancestry and were reported after correction for multiple testing.
MAIN OUTCOME MEASURE(S): Association of candidate gene variants with PCOS.
RESULT(S): Three variants, rs3797179 (SRD5A1), rs12473543 (POMC), and rs1501299 (ADIPOQ), were nominally associated with PCOS. However, they did not remain significant after correction for multiple testing, and none of the variants replicated in a sufficiently powered meta-analysis. Variants in the FBN3 gene (rs17202517 and rs73503752) were associated with smaller waist circumferences, and variant rs727428 in the SHBG gene was associated with lower sex hormone-binding globulin levels.
CONCLUSION(S): Previously identified variants in candidate genes do not seem to be associated with PCOS risk.

Arai S, Shibata Y, Nakamura Y, et al.
Development of prostate cancer in a patient with primary hypogonadism: intratumoural steroidogenesis in prostate cancer tissues.
Andrology. 2013; 1(1):169-74 [PubMed] Related Publications
Intratumoural steroidogenesis may play a significant role in the progression of prostate cancer (PC) in the context of long-term ablation of circulating testosterone (T). To clarify the mechanism accounting for the progression of PC in a 74-year-old man who had undergone bilateral orchiectomy when he was 5 years old, we performed immunohistochemical studies of androgen receptor (AR) and steroidogenic enzymes in the prostate. We also measured steroid hormone levels in the serum and prostate, as well as mRNA levels of genes mediating androgen metabolism in the prostate. Positive nuclear staining of AR was detected in malignant epithelial cells. The levels of androstenedione (Adione), T, and 5-alpha dihydrotestosterone (DHT) in the serum of the patient were similar to those in PC patients receiving neoadjuvant androgen deprivation therapy (ADT), but were higher in the patient's prostate than in PC patients not receiving ADT. The gene expression of CYP17A1 and HSD3B1 was not detected, whereas that of STS, HSD3B2, AKR1C3, SRD5A1, and SRD5A2 was detected. Moreover, cytoplasmic staining of HSD3B2, AKR1C3, SRD5A1, and SRD5A2 was detected in malignant epithelial cells. Hence, in the present case (a man with primary hypogonadism), steroidogenesis in PC tissues from adrenal androgens, especially dehydroepiandrosterone sulphate, was the mechanism accounting for progression of PC. This mechanism might help elucidate the development of castration-resistant PC.

Sinreih M, Hevir N, Rižner TL
Altered expression of genes involved in progesterone biosynthesis, metabolism and action in endometrial cancer.
Chem Biol Interact. 2013; 202(1-3):210-7 [PubMed] Related Publications
Endometrial cancer (EC) is one of the most common gynecological malignancies worldwide. It is associated with prolonged exposure to estrogens that is unopposed by the protective effects of progesterone, which suggests that altered progesterone biosynthesis, metabolism and actions might be implicated in the development of EC. Our aim was to evaluate these processes through quantitative real-time PCR expression analysis in up to 47 pairs of EC tissue and adjacent control endometrium. First, we examined the expression of genes encoding proteins associated with progesterone biosynthesis: steroidogenic acute regulatory protein (STAR); a side chain cleavage enzyme (CYP11A1); and 3β-hydroxysteroid dehydrogenase/ketosteroid isomerase (HSD3B). There were 1.9- and 10.0-fold decreased expression of STAR and CYP11A1, respectively, in EC versus adjacent control endometrium, with no significant differences in the expression of HSD3B1 and HSD3B2. Next, we examined expression of genes encoding five progesterone metabolizing enzymes: the 3-keto and 20-ketosteroid reductases (AKR1C1-AKR1C3) and 5α-reductases (SRD5A1 and SRD5A2); and the opposing 20α-hydroxysteroid dehydrogenase (HSD17B2). These genes are expressed in EC and adjacent control endometrium. No statistically significant differences were seen in mRNA levels of AKR1C1, AKR1C2, AKR1C3 and SRD5A1. Expression of HSD17B2 was 3.0-fold increased, and expression of SRD5A2 was 3.7-fold decreased, in EC versus adjacent control endometrium. We also examined mRNA levels of progesterone receptors A and B (PGR), and separately the expression of progesterone receptor B (PR-B). Here we saw 1.8- and 2.0-fold lower mRNA levels of PGR and PR-B, respectively, in EC versus adjacent control endometrium. This down-regulation of STAR, CYP11A1 and PGR in endometrial cancer may lead to decreased progesterone biosynthesis and actions although the effects on progesterone levels should be further studied.

Lévesque É, Huang SP, Audet-Walsh É, et al.
Molecular markers in key steroidogenic pathways, circulating steroid levels, and prostate cancer progression.
Clin Cancer Res. 2013; 19(3):699-709 [PubMed] Related Publications
PURPOSE: Prostate cancer is a heterogeneous genetic disease, and molecular methods for predicting prognosis in patients with aggressive form of the disease are urgently needed to better personalize treatment approaches. The objective was to identify host genetic variations in candidate steroidogenic genes affecting hormone levels and prostate cancer progression.
EXPERIMENTAL DESIGN: The study examined two independent cohorts composed of 526 Caucasian men with organ-confined prostate cancer and 601 Taiwanese men on androgen-deprivation therapy. Caucasians were genotyped for 109 haplotype-tagging single-nucleotide polymorphisms (SNP) in CYP17A1, ESR1, CYP19A1, and HSD3B1, and their prognostic significance on disease progression was assessed using Kaplan-Meier survival curves and Cox regression models. Positive findings, including previously identified SRD5A1, SRD5A2, HSD17B2, HSD17B3, and HSD17B12 polymorphisms, were then explored in Taiwanese men (n = 32 SNPs). The influence of positive markers on the circulating hormonal levels was then appraised in Caucasians using specific and sensitive mass spectrometry-based methods.
RESULTS: After adjusting for known risk factors, variants of CYP17A1 (rs6162), HSD17B2 (rs4243229 and rs7201637), and ESR1 (rs1062577) were associated with progressive disease in both cohorts. Indeed, the presence of these variations was significantly associated with progression in Caucasians (HR, 2.29-4.10; P = 0.0014-2 × 10(-7)) and survival in Taiwanese patients [HR = 3.74; 95% confidence interval (CI): 1.71-8.19, P = 0.009]. Remarkably, the CYP17A1 rs6162 polymorphism was linked to plasma dehydroepiandrosterone-sulfate (DHEA-S) levels (P = 0.03), HSD17B2 rs7201637 with levels of dihydrotestosterone (P = 0.03), and ESR1 rs1062577 with levels of estrone-S and androsterone-glucuronide (P ≤ 0.05).
CONCLUSION: This study identifies, in different ethnic groups and at different disease stages, CYP17A1, HSD17B2, and ESR1 as attractive prognostic molecular markers of prostate cancer progression.

Mitsiades N, Sung CC, Schultz N, et al.
Distinct patterns of dysregulated expression of enzymes involved in androgen synthesis and metabolism in metastatic prostate cancer tumors.
Cancer Res. 2012; 72(23):6142-52 [PubMed] Free Access to Full Article Related Publications
Androgen receptor (AR) signaling persists in castration-resistant prostate carcinomas (CRPC), because of several mechanisms that include increased AR expression and intratumoral androgen metabolism. We investigated the mechanisms underlying aberrant expression of transcripts involved in androgen metabolism in CRPC. We compared gene expression profiles and DNA copy number alteration (CNA) data from 29 normal prostate tissue samples, 127 primary prostate carcinomas (PCa), and 19 metastatic PCas. Steroidogenic enzyme transcripts were evaluated by quantitative reverse transcriptase PCR in PCa cell lines and circulating tumor cells (CTC) from CRPC patients. Metastatic PCas expressed higher transcript levels for AR and several steroidogenic enzymes, including SRD5A1, SRD5A3, and AKR1C3, whereas expression of SRD5A2, CYP3A4, CYP3A5, and CYP3A7 was decreased. This aberrant expression was rarely associated with CNAs. Instead, our data suggest distinct patterns of coordinated aberrant enzyme expression. Inhibition of AR activity by itself stimulated AKR1C3 expression. The aberrant expression of the steroidogenic enzyme transcripts was detected in CTCs from CRPC patients. In conclusion, our findings identify substantial interpatient heterogeneity and distinct patterns of dysregulated expression of enzymes involved in intratumoral androgen metabolism in PCa. These steroidogenic enzymes represent targets for complete suppression of systemic and intratumoral androgen levels, an objective that is supported by the clinical efficacy of the CYP17 inhibitor abiraterone. A comprehensive AR axis-targeting approach via simultaneous, frontline enzymatic blockade, and/or transcriptional repression of several steroidogenic enzymes, in combination with GnRH analogs and potent antiandrogens, would represent a powerful future strategy for PCa management.

Ateeq B, Vellaichamy A, Tomlins SA, et al.
Role of dutasteride in pre-clinical ETS fusion-positive prostate cancer models.
Prostate. 2012; 72(14):1542-9 [PubMed] Related Publications
BACKGROUND: Androgens play a crucial role in prostate cancer, hence the androgenic pathway has become an important target of therapeutic intervention. Previously we discovered that gene fusions between the 5'-untranslated region of androgen regulated gene TMPRSS2 and the ETS transcription factor family members were present in a majority of the prostate cancer cases. The resulting aberrant overexpression of ETS genes drives tumor progression.
METHODS: Here, we evaluated the expression levels of 5α-reductase isoenzymes in prostate cancer cell lines and tissues. We tested the effect of dutasteride, a 5α-reductase inhibitor, in TMPRSS2-ERG fusion-positive VCaP cell proliferation and cell invasion. We also evaluated the effect of dutasteride on the TMPRSS2-ERG fusion gene expression. Finally, we tested dutasteride alone or in combination with an anti-androgen in VCaP cell xenografts tumor model.
RESULTS: Our data showed that 5α-reductase SRD5A1 and SRD5A3 isoenzymes that are responsible for the conversion of testosterone to DHT, are highly expressed in metastatic prostate cancer compared to benign and localized prostate cancer. Dutasteride treatment attenuated VCaP cell proliferation and invasion. VCaP cells pre-treated with dutasteride showed a reduction in ERG and PSA expression. In vivo studies demonstrated that dutasteride in combination with the anti-androgen bicalutamide significantly decreased tumor burden in VCaP cell xenograft model.
CONCLUSIONS: Our findings suggest that dutasteride can inhibit ERG fusion-positive cell growth and in combination with anti-androgen, significantly reduce the tumor burden. Our study suggests that anti-androgens used in combination with dutasteride could synergistically augment the therapeutic efficacy in the treatment of ETS-positive prostate cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SRD5A1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999