Gene Summary

Gene:SLC22A18; solute carrier family 22 member 18
Summary:This gene is one of several tumor-suppressing subtransferable fragments located in the imprinted gene domain of 11p15.5, an important tumor-suppressor gene region. Alterations in this region have been associated with the Beckwith-Wiedemann syndrome, Wilms tumor, rhabdomyosarcoma, adrenocortical carcinoma, and lung, ovarian, and breast cancer. This gene is imprinted, with preferential expression from the maternal allele. Mutations in this gene have been found in Wilms' tumor and lung cancer. This protein may act as a transporter of organic cations, and have a role in the transport of chloroquine and quinidine-related compounds in kidney. Several alternatively spliced transcript variants encoding different isoforms have been described. [provided by RefSeq, Oct 2015]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:solute carrier family 22 member 18
Source:NCBIAccessed: 31 August, 2019

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Latest Publications: SLC22A18 (cancer-related)

Ito S, Honda G, Fujino Y, et al.
Knockdown of Orphan Transporter SLC22A18 Impairs Lipid Metabolism and Increases Invasiveness of HepG2 Cells.
Pharm Res. 2019; 36(3):39 [PubMed] Related Publications
PURPOSE: The aim of this work is to investigate the roles of solute carrier family 22 member 18 (SLC22A18) in lipid metabolism and in establishing the tumor phenotype of HepG2 cells.
METHODS: SLC22A18-knockdown HepG2 cells were established by stable transfection with shRNA. Protein expression levels were measured by quantitative proteomics and Western blot analysis. Cell growth was examined by cell counting kit. Accumulation of triglyceride-rich lipid droplets was measured by Oil-Red O staining. Cell migration and invasion were examined by Transwell assays.
RESULTS: SLC22A18-knockdown HepG2 cells accumulated triglyceride-rich lipid droplets and showed decreased expression levels of lysosomal/autophagic proteins, suggesting that lipid degradation is suppressed. Growth of HepG2 cells was decreased by SLC22A18 knockdown, but was restored by free fatty acid supplementation. In addition, SLC22A18 knockdown decreased the expression of insulin-like growth factor-binding protein 1 (IGFBP-1) and increased the invasion ability of HepG2 cells. Exogenous IGFBP-1 blocked the increase of invasion activity induced by SLC22A18 knockdown.
CONCLUSION: Our results suggest that suppression of SLC22A18 decreased the supply of intracellular free fatty acids from triglyceride-rich lipid droplets by impairing the lysosomal/autophagy degradation pathway and reduced the invasive activity of HepG2 cells by decreasing IGFBP-1 expression.

Reuter A, Sckell A, Brandenburg LO, et al.
Overexpression of MicroRNA-1 in Prostate Cancer Cells Modulates the Blood Vessel System of an
In Vivo. 2019 Jan-Feb; 33(1):41-46 [PubMed] Free Access to Full Article Related Publications
BACKGROUND/AIM: In prostate cancer (PC), the formation of new blood vessels is stimulated by hypoxic conditions, androgens, and a number of molecular factors including microRNAs. MicroRNA-1 (miR-1) has been characterized in some tumor entities as anti-angiogenic, but this has not yet been investigated in PC.
MATERIALS AND METHODS: PC cells stably overexpressing miR-1 (LNCaP-miR-1) were incubated on an in vivo hen's egg test-chorioallantoic membrane (HET-CAM) model and compared to maternal LNCaP cells. Cell growth, blood vessel organisation, and total blood vessel area were analysed.
RESULTS: Both matrigel-embedded LNCaP and LNCaP-miR-1 cells formed compact tumor-like cell aggregates on the CAM of the HET-CAM model. Although not quantifiable, bleeding of the CAM and remodelling of the blood vessel network in the CAM indicated an influence of miR-1 on the vascular system. The statistically significant decrease in the total surface area of blood vessels in the visible CAM section to 79.4% of control cells demonstrated the antiangiogenic properties of miR-1 for the first time.
CONCLUSION: MiR-1 had a tumor-suppressive and anti-angiogenic effect in an in vivo PC model. In the clinic, miR-1-mediated anti-angiogenesis would result in reduced tumor supply and increased hypoxic stress inside the tumor. Thus, miR-1 restoration by nucleic acid-based miR-1 mimetics would represent a promising option for future PC therapy.

Girard E, Eon-Marchais S, Olaso R, et al.
Familial breast cancer and DNA repair genes: Insights into known and novel susceptibility genes from the GENESIS study, and implications for multigene panel testing.
Int J Cancer. 2019; 144(8):1962-1974 [PubMed] Free Access to Full Article Related Publications
Pathogenic variants in BRCA1 and BRCA2 only explain the underlying genetic cause of about 10% of hereditary breast and ovarian cancer families. Because of cost-effectiveness, multigene panel testing is often performed even if the clinical utility of testing most of the genes remains questionable. The purpose of our study was to assess the contribution of rare, deleterious-predicted variants in DNA repair genes in familial breast cancer (BC) in a well-characterized and homogeneous population. We analyzed 113 DNA repair genes selected from either an exome sequencing or a candidate gene approach in the GENESIS study, which includes familial BC cases with no BRCA1 or BRCA2 mutation and having a sister with BC (N = 1,207), and general population controls (N = 1,199). Sequencing data were filtered for rare loss-of-function variants (LoF) and likely deleterious missense variants (MV). We confirmed associations between LoF and MV in PALB2, ATM and CHEK2 and BC occurrence. We also identified for the first time associations between FANCI, MAST1, POLH and RTEL1 and BC susceptibility. Unlike other associated genes, carriers of an ATM LoF had a significantly higher risk of developing BC than carriers of an ATM MV (OR

Ito S, Fujino Y, Ogata S, et al.
Involvement of an Orphan Transporter, SLC22A18, in Cell Growth and Drug Resistance of Human Breast Cancer MCF7 Cells.
J Pharm Sci. 2018; 107(12):3163-3170 [PubMed] Related Publications
The SLC22A18 gene, which encodes an orphan transporter, is located at the 11p15.5 imprinted region, an important tumor suppressor gene region. However, the role of SLC22A18 in tumor suppression remains unclear. Here, we investigated the involvement of SLC22A18 in cell growth, invasion, and drug resistance of MCF7 human breast cancer cell line. Western blot analysis indicated that SLC22A18 is predominantly expressed at intracellular organelle membranes. Quantitative proteomics showed that knockdown of SLC22A18 significantly altered the expression of 578 (31.0%) of 1867 proteins identified, including proteins related to malignancy and poor prognosis of breast cancer. SLC22A18 knockdown (1) increased MCF7 cell growth concomitantly with a >7-fold increase of annexin A8 (involved in cell growth and migration; a predictor of poor prognosis), (2) induced spherical morphology of MCF7 cells concomitantly with a nearly 3-fold increase of CD44 (involved in regulation of malignant phenotypes), and (3) increased chemosensitivity to vinca alkaloids concomitantly with a >80% reduction of doublecortin-like kinase 1 (involved in regulation of microtubule polymerization). Our results suggest that SLC22A18 may act as a tumor suppressor by regulating the expression levels of cell growth-related proteins, and vinca alkaloids might show therapeutic efficacy against low-SLC22A18-expressing breast cancer.

Yang B, Ma YB, Chu SH
Silencing SATB1 overcomes temozolomide resistance by downregulating MGMT expression and upregulating SLC22A18 expression in human glioblastoma cells.
Cancer Gene Ther. 2018; 25(11-12):309-316 [PubMed] Related Publications
Glioblastoma multiforme (GBM) is the most common malignant tumor of the central nervous system and has a very poor prognosis. Currently, patients were treated by resection followed by radiotherapy plus concurrent temozolomide (TMZ) chemotherapy. However, many patients are resistant to TMZ-induced DNA damage because of upregulated expression of the DNA repair enzyme O

Poffenberger MC, Metcalfe-Roach A, Aguilar E, et al.
LKB1 deficiency in T cells promotes the development of gastrointestinal polyposis.
Science. 2018; 361(6400):406-411 [PubMed] Related Publications
Germline mutations in

Wang YC, Wang ZQ, Yuan Y, et al.
Notch Signaling Pathway Is Inhibited in the Development of Barrett's Esophagus: An In Vivo and In Vitro Study.
Can J Gastroenterol Hepatol. 2018; 2018:4149317 [PubMed] Free Access to Full Article Related Publications
Objective: To explore the role of Notch signaling in the development of Barrett's esophagus.
Methods: Patients with esophagectomy and gastric interposition were recruited as a human model of gastroesophageal reflux disease. The expressions of Notch signaling genes in normal esophagus from surgical specimen and columnar metaplasia in the esophageal remnant after esophagectomy were evaluated by real time quantitative Polymerase Chain Reaction (RT-qPCR) and immunohistochemistry (IHC). For in vitro experiments, Het-1A cells were treated with hydrochloric acid, deoxycholic acid, mixture of hydrochloric acid and deoxycholic acid, or Notch1-siRNA, and expressions of Notch1, Hes1, MUC2, and K13 were evaluated via RT-qPCR and western blot.
Results: Samples were obtained from 36 patients with columnar metaplasia in the esophageal remnant. Both IHC and RT-qPCR indicated that Notch1 and Hes1 expressions were significantly higher in normal esophagus than that in metaplasia. Hydrochloric acid and deoxycholic acid suppressed Notch1, Hes1, and K13 expressions, in concert with increasing MUC2 expressions. Notch inhibition by Notch1-siRNA contributed to the downregulation of Notch1, Hes1, and K13 expressions, whereas MUC2 expression was enhanced.
Conclusions: Both hydrochloric acid and deoxycholic acid could suppress Notch signaling pathway in esophageal epithelial cells, and inhibited Notch signaling has important functions in the development of Barrett's esophagus.

Uribe D, Cardona A, Esposti DD, et al.
Antiproliferative Effects of Epigenetic Modifier Drugs Through E-cadherin Up-regulation in Liver Cancer Cell Lines.
Ann Hepatol. 2018 May-June; 17(3):444-460 [PubMed] Related Publications
INTRODUCTION AND AIM: Epigenetic alterations play an essential role in cancer onset and progression, thus studies of drugs targeting the epigenetic machinery are a principal concern for cancer treatment. Here, we evaluated the potential of the combination of the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5aza-dC) and the pan-deacetylase inhibitor Trichostatin A (TSA), at low cytotoxic concentrations, to modulate the canonical Wnt/β-catenin pathway in liver cancer cells.
MATERIAL AND METHODS: Pyrosequencing was used for DNA methylation analyses of LINE-1 sequences and the Wnt/β-catenin pathway antagonist DKK3, SFRP1, WIF1 and CDH1. qRT-PCR was employed to verify the expression of the antagonist. Pathway regulation were evaluated looking at the expression of β-catenin and E-cadherin by confocal microscopy and the antitumoral effects of the drugs was studied by wound healing and clonogenic assays.
RESULTS: Our result suggest that 5aza-dC and TSA treatments were enough to induce a significant expression of the pathway antagonists, decrease of β-catenin protein levels, re-localization of the protein to the plasma membrane, and pathway transcriptional activity reduction. These important effects exerted an antitumoral outcome shown by the reduction of the migration and clonogenic capabilities of the cells.
CONCLUSION: We were able to demonstrate Wnt/ β-catenin pathway modulation through E-cadherin up-regulation induced by 5aza-dC and TSA treatments, under an activation-pathway background, like CTNNB1 and TP53 mutations. These findings provide evidences of the potential effect of epigenetic modifier drugs for liver cancer treatment. However, further research needs to be conducted, to determine the in vivo potential of this treatment regimen for the management of liver cancer.

Potrony M, Puig-Butille JA, Farnham JM, et al.
Genome-wide linkage analysis in Spanish melanoma-prone families identifies a new familial melanoma susceptibility locus at 11q.
Eur J Hum Genet. 2018; 26(8):1188-1193 [PubMed] Free Access to Full Article Related Publications
The main genetic factors for familial melanoma remain unknown in >75% of families. CDKN2A is mutated in around 20% of melanoma-prone families. Other high-risk melanoma susceptibility genes explain <3% of families studied to date. We performed the first genome-wide linkage analysis in CDKN2A-negative Spanish melanoma-prone families to identify novel melanoma susceptibility loci. We included 68 individuals from 2, 3, and 6 families with 2, 3, and at least 4 melanoma cases. We detected a locus with significant linkage evidence at 11q14.1-q14.3, with a maximum het-TLOD of 3.449 (rs12285365:A>G), using evidence from multiple pedigrees. The genes contained by the subregion with the strongest linkage evidence were: DLG2, PRSS23, FZD4, and TMEM135. We also detected several regions with suggestive linkage evidence (TLOD >1.9) (1q, 6p, 7p, 11q, 12p, 13q) including the region previously detected in melanoma-prone families from Sweden at 3q29. The family-specific analysis revealed three loci with suggestive linkage evidence for family #1: 1q31.1-q32.1 (max. TLOD 2.447), 6p24.3-p22.3 (max. TLOD 2.409), and 11q13.3-q21 (max. TLOD 2.654). Future next-generation sequencing studies of these regions may allow the identification of new melanoma susceptibility genetic factors.

Fendrich V, Jendryschek F, Beeck S, et al.
Genetic and pharmacologic abrogation of Snail1 inhibits acinar-to-ductal metaplasia in precursor lesions of pancreatic ductal adenocarcinoma and pancreatic injury.
Oncogene. 2018; 37(14):1845-1856 [PubMed] Related Publications
Pancreatic cancer (PDAC) is one of the most dismal of human malignancies. Inhibiting or delaying the progression of precursor lesions of PDAC, pancreatic intraepthial neoplasia (PanINs), to invasive cancer, would be a major step. In the present study, we used a transgenic murine model of pancreatic cancer to evaluate the impact of a conditional knockout of the transcription factor Snail1, a major factor in epithelial-to-mesenchymal transition, on acinar-to-ductal formation and on PanIN progression. By interbreeding conditional LsL-Snail

Khan AA, Advani J, Patel K, et al.
Chronic Exposure to Cigarette Smoke and Chewing Tobacco Alters Expression of microRNAs in Esophageal Epithelial Cells.
Microrna. 2018; 7(1):28-37 [PubMed] Related Publications
BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers with high mortality rate. Cigarette smoke and chewing tobacco are well known risk factors associated with ESCC. However, molecular mechanisms associated with development of ESCC among smokers and chewers are poorly understood. MicroRNAs play an important role in regulating physiological and disease processes including esophageal cancer.
OBJECTIVE AND METHODS: In this study, we developed an in vitro model by treating non-neoplastic Het- 1A esophageal cell line with cigarette smoke and chewing tobacco. We carried out miRNA sequencing on Illumina HiSeq 2500 platform and compared miRNA expression pattern across cigarette smoke and chewing tobacco treated Het-1A cells with untreated cells.
RESULTS: We identified and quantified 433 miRNAs in both smoke exposed and chewing tobacco treated cells, of which 13 miRNAs showed significantly altered expression in cigarette smoke exposed cells while 25 miRNAs showed significantly altered expression in chewing tobacco treated cells. In addition, we predicted novel miRNAs from these data-sets. We evaluated miRNAs that showed selective or context dependent expression pattern in cigarette smoke exposed or chewing tobacco treated cells.
CONCLUSION: In this study, we have comprehensively mapped miRNA expression pattern in response to cigarette smoke and chewing tobacco in Het-1A cells. We identified miRNAs that show altered expression in these cell models.

Teng G, Dai Y, Chu Y, et al.
Helicobacter pylori induces caudal-type homeobox protein 2 and cyclooxygenase 2 expression by modulating microRNAs in esophageal epithelial cells.
Cancer Sci. 2018; 109(2):297-307 [PubMed] Free Access to Full Article Related Publications
Dysregulation of microRNAs (miRNAs) has been linked to virulence factors of Helicobacter pylori. The role of H. pylori in esophageal disease has not been clearly defined. We previously reported that H. pylori esophageal colonization promotes the incidence of Barrett's esophagus and esophageal adenocarcinoma in vivo. Here, we studied the direct effects of H. pylori on the transformation of esophageal epithelial cells, with particular focus on whether H. pylori exerts its effects by modulating miRNAs and their downstream target genes. The normal human esophageal cell line HET-1A was chronically exposed to H. pylori extract and/or acidified deoxycholic acid for up to 36 weeks. The miRNA profiles of the esophageal epithelial cells associated with H. pylori infection were determined by microarray analysis. We found that chronic H. pylori exposure promoted acidified deoxycholic acid-induced morphological changes in HET-1A cells, along with aberrant overexpression of intestinal metaplasia markers and tumorigenic factors, including caudal-type homeobox protein 2 (CDX2), mucin 2, and cyclooxygenase 2 (COX2). Helicobacter pylori modified the miRNA profiles of esophageal epithelial cells, particularly aberrant silencing of miR-212-3p and miR-361-3p. Moreover, in biopsies from Barrett's esophagus patients, esophageal H. pylori colonization was associated with a significant decrease in miR-212-3p and miR-361-3p expression. Furthermore, we identified COX2 as a target of miR-212-3p, and CDX2 as a target of miR-361-3p. Helicobacter pylori infection of esophageal epithelial cells was associated with miRNA-mediated upregulation of oncoprotein CDX2 and COX2. Our observations provide new evidence about the molecular mechanisms underlying the association between H. pylori infection and esophageal carcinogenesis.

Prichard DO, Byrne AM, Murphy JO, et al.
Deoxycholic acid promotes development of gastroesophageal reflux disease and Barrett's oesophagus by modulating integrin-αv trafficking.
J Cell Mol Med. 2017; 21(12):3612-3625 [PubMed] Free Access to Full Article Related Publications
The fundamental mechanisms underlying erosive oesophagitis and subsequent development of Barrett's oesophagus (BO) are poorly understood. Here, we investigated the contribution of specific components of the gastric refluxate on adhesion molecules involved in epithelial barrier maintenance. Cell line models of squamous epithelium (HET-1A) and BO (QH) were used to examine the effects of bile acids on cell adhesion to extracellular matrix proteins (Collagen, laminin, vitronectin, fibronectin) and expression of integrin ligands (α

Fallatah MM, Liu S, Sevigny MB, et al.
Novel flexible heteroarotinoid, SL-1-18, promotes ERα degradation to inhibit breast cancer cell growth.
Cancer Lett. 2017; 408:82-91 [PubMed] Related Publications
SL-1-18 (1-(chrysen-6-yl)-3-(4-nitrophenyl)thiourea) is new flexible heteroarotinoid (Flex-Het) analog derived from the parent compound, SHetA2, and our previous study showed comparable activity to SHetA2 in terms of inhibiting ER+ breast cancer cell growth. This current study aims to determine the molecular mechanism underlying SL-1-18's effect on breast cancer cell growth. Our results indicate that SL-1-18 inhibits cell proliferation of ER+ breast cancer cells (MCF-7 and T-47D) by preventing cell cycle progression. SL-1-18 treatment correlated positively with decreased expression of key cell-cycle regulators, such as cyclin D1, as well as other ERα-target genes at both the transcript and protein levels. Interestingly, decreased expression of ERα was also observed, with a significant reduction at the protein level within 2 h of SL-1-18 treatment, while the decrease in mRNA occurred at a later time point. ERα degradation was shown to be mediated by the ubiquitination-proteasome pathway. In summary, this is the first study to show that a Flex-Het- SL-1-18- can promote the degradation of ERα via the ubiquitin-proteasome pathway and should be further developed as a therapeutic option for ER+ breast cancer.

Feng J, Qi B, Guo L, et al.
miR-382 functions as a tumor suppressor against esophageal squamous cell carcinoma.
World J Gastroenterol. 2017; 23(23):4243-4251 [PubMed] Free Access to Full Article Related Publications
AIM: To explore the effect of miR-382 on esophageal squamous cell carcinoma (ESCC)
METHODS: Eca109 cells derived from human ESCC and Het-1A cells derived from human normal esophageal epithelium were used. Lentivirus-mediated miR-382 was overexpressed in Eca109 cells. The effect of miR-382 on cell proliferation was evaluated by MTT and colony formation assay. For cell cycle analysis, cells were fixed and stained for 30 min with propidium iodide (PI) staining buffer containing 10 mg/mL PI and 100 mg/mL RNase A, and analyzed by BD FACSCalibur™ flow cytometer. For cell apoptosis assay, cells were stained with an Annexin V-FITC/PI Apoptosis Detection Kit according to the manufacturer's instructions and analyzed by a dual-laser flow cytometer. Cell invasion and migration abilities were determined through use of transwell chambers, non-coated or pre-coated with matrigel. Levels of proteins related to cell growth and migration were examined by western blotting.
RESULTS: Endogenous miR-382 was down-regulated in Eca109 cells compared with Het-1A. Introduction of miR-382 not only significantly inhibited proliferation and colony formation, but also arrested cell cycle at the G2/M phase, as well as promoted apoptosis and autophagy in Eca109 cells. Migration, invasion and epithelial-mesenchymal transition of Eca109 cells were suppressed by overexpressing miR-382. Western blotting results showed that miR-382 inhibited the phosphorylation of mTOR and 4E-BP1.
CONCLUSION: miR-382 functions as a tumor suppressor against ESCC development and metastasis, and could be considered as a potential drug source for the treatment of ESCC patients.

Zhang M, Zhang L, Cui M, et al.
miR-302b inhibits cancer-related inflammation by targeting ERBB4, IRF2 and CXCR4 in esophageal cancer.
Oncotarget. 2017; 8(30):49053-49063 [PubMed] Free Access to Full Article Related Publications
Cancer related inflammation (CRI) plays an important role in the development of esophageal cancer (EC), and the target gene analysis shows that miR-302b potential target genes closely correlated to CRI important signaling pathways. The present study was to evaluate the inhibition of miR-302b on CRI in EC and its mechanism. We found that the expression levels of miR-302b in EC cells were lower than that in Het-1A cells, while TE11 with the lowest expression and OE33 with the highest. Inflammatory stimuli at 48 h significantly reduced expression of miR-302b in EC cells, but had no effect in Het-1A. After up-regulation of miR-302b in TE11 and down-regulation of miR-302b in OE33, it was found that miR-302b reduced CRI key transcription factors and representative cytokines. Then, over-expressed of miR-302b significantly altered potential target genes protein expressions and there was a negative correlation between miR-302b and potential target genes protein expressions (ERBB4, IRF2 and CXCR4) in EC tissues. Then reporter gene analysis revealed that miR-302b post-transcriptionally regulated expression of target genes by specific area of 3'-UTR. Transfected by target genes shRNA plasmids together could get the same effects of miR-302b on protein expression of CRI key transcription factors. Furthermore, miR-302b was able to repress tumor growth and transcription factors protein expression in vivo. These finding suggests that miR-302b inhibits key transcription factors and cytokines by targeting ERBB4, IRF2 and CXCR4, implicating its role in the inhibition of CRI in EC.

Ose J, Schock H, Poole EM, et al.
Pre-diagnosis insulin-like growth factor-I and risk of epithelial invasive ovarian cancer by histological subtypes: A collaborative re-analysis from the Ovarian Cancer Cohort Consortium.
Cancer Causes Control. 2017; 28(5):429-435 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Biologic evidence suggests that the Insulin-like growth factor (IGF)-family may be involved in the etiology of epithelial invasive ovarian cancer (EOC). However, prospective studies investigating the role of IGF-I in ovarian carcinogenesis have yielded conflicting results.
METHODS: We pooled and harmonized data from 6 case-control studies nested within the Ovarian Cancer Cohort Consortium to investigate the association between pre-diagnosis IGF-I concentrations and subsequent risk of EOC. We evaluated IGF-I concentrations and risk of EOC overall and by tumor subtype (defined by histology, grade, stage) in 1,270 cases and 2,907 matched controls. Multivariable conditional logistic regression models were used to calculate odds ratios (OR) and 95% confidence intervals (CI).
RESULTS: Doubling of IGF-I concentration was associated with significantly lower risk of overall EOC [OR
CONCLUSIONS: These results suggest that IGF-I concentrations are inversely associated with EOC risk, independent of histological phenotype. Future prospective research should consider potential mechanisms for this association, including, considering other members of the IGF-family to better characterize the role of IGF-signaling in the etiology of EOC.

Fortner RT, Sarink D, Schock H, et al.
Osteoprotegerin and breast cancer risk by hormone receptor subtype: a nested case-control study in the EPIC cohort.
BMC Med. 2017; 15(1):26 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Circulating osteoprotegerin (OPG), a member of the receptor activator of nuclear factor kappa-B (RANK) axis, may influence breast cancer risk via its role as the decoy receptor for both the RANK ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Circulating OPG and breast cancer risk has been examined in only one prior study.
METHODS: A case-control study was nested in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. A total of 2008 incident invasive breast cancer cases (estrogen receptor (ER)+, n = 1622; ER-, n = 386), matched 1:1 to controls, were included in the analysis. Women were predominantly postmenopausal at blood collection (77%); postmenopausal women included users and non-users of postmenopausal hormone therapy (HT). Serum OPG was quantified with an electrochemiluminescence assay. Relative risks (RRs) and 95% confidence intervals (CIs) were calculated using conditional logistic regression.
RESULTS: The associations between OPG and ER+ and ER- breast cancer differed significantly. Higher concentrations of OPG were associated with increased risk of ER- breast cancer (top vs. bottom tertile RR = 1.93 [95% CI 1.24-3.02]; p
CONCLUSIONS: This study provides the first prospective data on OPG and breast cancer risk by hormone receptor subtype. High circulating OPG may represent a novel risk factor for ER- breast cancer.

Deckers IA, van Engeland M, van den Brandt PA, et al.
Promoter CpG island methylation in ion transport mechanisms and associated dietary intakes jointly influence the risk of clear-cell renal cell cancer.
Int J Epidemiol. 2017; 46(2):622-631 [PubMed] Related Publications
Background: Sodium intake, but not potassium or fluid intake, has been associated with higher renal cell cancer (RCC) risk. However, risk factors may differ by molecular subtypes of the tumour. In renal physiology, electrolyte and water homeostasis is facilitated by ion transport mechanisms (ITM). Aberrant regulation of ITM genes, for example by promoter CpG island methylation, may modify associations between sodium, potassium and fluid intake and RCC risk.
Methods: We identified ARHGDIG , ATP1A1 , SCNN1B and SLC8A3 as ITM genes exhibiting RCC-specific promoter methylation and down-regulation. Methylation-specific polymerase chain reaction (PCR) was used to analyse promoter CpG island methylation in tumour DNA of 453 RCC cases from the Netherlands Cohort Study ( n = 120 852) after 20.3 years of follow-up. Diet was measured at baseline using food-frequency questionnaires. Cox regression analyses were restricted to clear-cell (cc)RCC ( n = 306) and stratified by tumours with no, low (1 gene) and high (≥ 2 genes) methylation.
Results: Sodium intake (high vs low) increased ccRCC risk particularly in tumours with a high methylation index: hazard ratio (HR) [95% confidence interval (CI)]: 2.04 (1.16-3.58), whereas heterogeneity across the methylation index was not significant ( P -heterogeneity = 0.26). Potassium intake was differentially associated with ccRCC risk ( P -heterogeneity = 0.008); the risk for high (vs low) potassium intake was low for unmethylated tumours [HR (95% CI): 0.60 (0.36-1.01)], but high for tumours with a high methylation index [HR (95% CI): 1.60 (0.96-2.65)]. Risks similarly differed for fluid intake, though not significantly ( P -heterogeneity = 0.54).
Conclusions: Our findings suggest for the first time that dietary intakes are differentially associated with ccRCC risk according to molecular subtypes defined by ITM gene-specific promoter methylation.

Prada-Arismendy J, Arroyave JC, Röthlisberger S
Molecular biomarkers in acute myeloid leukemia.
Blood Rev. 2017; 31(1):63-76 [PubMed] Related Publications
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. The pathophysiology of this disease is just beginning to be understood at the cellular and molecular level, and currently cytogenetic markers are the most important for risk stratification and treatment of AML patients. However, with the advent of new technologies, the detection of other molecular markers such as point mutations and characterization of epigenetic and proteomic profiles, have begun to play an important role in how the disease is approached. Recent evidence shows that the identification of new AML biomarkers contributes to a better understanding of the molecular basis of the disease, is significantly useful in screening, diagnosis, prognosis and monitoring of AML, as well as the possibility of predicting each individual's response to treatment. This review summarizes the most relevant molecular (genetic, epigenetic, and protein) biomarkers associated with acute myeloid leukemia and discusses their clinical importance in terms of risk prediction, diagnosis and prognosis.

Hoekstra AS, Addie RD, Ras C, et al.
Parent-of-origin tumourigenesis is mediated by an essential imprinted modifier in SDHD-linked paragangliomas: SLC22A18 and CDKN1C are candidate tumour modifiers.
Hum Mol Genet. 2016; 25(17):3715-3728 [PubMed] Related Publications
Mutations in SDHD and SDHAF2 (both located on chromosome 11) give rise to hereditary paraganglioma almost exclusively after paternal transmission of the mutation, and tumours often show loss of the entire maternal copy of chromosome 11. The 'Hensen' model postulates that a tumour modifier gene located on chromosome 11p15, a region known to harbour a cluster of imprinted genes, is essential to tumour formation. We observed decreased protein expression of the 11p15 candidate genes CDKN1C, SLC22A18 and ZNF215 evaluated in 60 SDHD-mutated tumours compared to normal carotid body tissue and non-SDH mutant tumours.We then created stable knockdown in vitro models, reasoning that the simultaneous knockdown of SDHD and a maternally expressed 11p15 modifier gene would enhance paraganglioma-related cellular characteristics compared to SDHD knockdown alone. Knockdown of SDHD in SNB19 and SHSY5Y cells resulted in the accumulation of succinate, the stabilization of HIF1 protein and a reduction in cell proliferation.Compared to single knockdown of SDHD, knockdown of SDHD together with SLC22A18 or with CDKN1C led to small but significant increases in cell proliferation and resistance to apoptosis, and to a gene expression profile closely related to the known transcriptional profile of SDH-deficient tumours. Of the 60 SDHD tumours investigated, four tumours showing retention of chromosome 11 showed SLC22A18 and CDKN1C expression levels comparable to levels in tumours showing loss of chromosome 11, suggesting loss of protein expression despite chromosomal retention.Our data strongly suggest that SLC22A18 and/or CDKN1C are tumour modifier genes involved in the tumourigenesis of SDHD-linked paraganglioma.

Bauman JE, Zang Y, Sen M, et al.
Prevention of Carcinogen-Induced Oral Cancer by Sulforaphane.
Cancer Prev Res (Phila). 2016; 9(7):547-57 [PubMed] Free Access to Full Article Related Publications
Chronic exposure to carcinogens represents the major risk factor for head and neck squamous cell carcinoma (HNSCC). Beverages derived from broccoli sprout extracts (BSE) that are rich in glucoraphanin and its bioactive metabolite sulforaphane promote detoxication of airborne pollutants in humans. Herein, we investigated the potential chemopreventive activity of sulforaphane using in vitro models of normal and malignant mucosal epithelial cells and an in vivo model of murine oral cancer resulting from the carcinogen 4-nitroquinoline-1-oxide (4NQO). Sulforaphane treatment of Het-1A, a normal mucosal epithelial cell line, and 4 HNSCC cell lines led to dose- and time-dependent induction of NRF2 and the NRF2 target genes NQO1 and GCLC, known mediators of carcinogen detoxication. Sulforaphane also promoted NRF2-independent dephosphorylation/inactivation of pSTAT3, a key oncogenic factor in HNSCC. Compared with vehicle, sulforaphane significantly reduced the incidence and size of 4NQO-induced tongue tumors in mice. A pilot clinical trial in 10 healthy volunteers evaluated the bioavailability and pharmacodynamic activity of three different BSE regimens, based upon urinary sulforaphane metabolites and NQO1 transcripts in buccal scrapings, respectively. Ingestion of sulforaphane-rich BSE demonstrated the greatest, most consistent bioavailability. Mucosal bioactivity, defined as 2-fold or greater upregulation of NQO1 mRNA, was observed in 6 of 9 evaluable participants ingesting glucoraphanin-rich BSE; 3 of 6 ingesting sulforaphane-rich BSE; and 3 of 9 after topical-only exposure to sulforaphane-rich BSE. Together, our findings demonstrate preclinical chemopreventive activity of sulforaphane against carcinogen-induced oral cancer, and support further mechanistic and clinical investigation of sulforaphane as a chemopreventive agent against tobacco-related HNSCC. Cancer Prev Res; 9(7); 547-57. ©2016 AACR.

Bhutia YD, Babu E, Ramachandran S, et al.
SLC transporters as a novel class of tumour suppressors: identity, function and molecular mechanisms.
Biochem J. 2016; 473(9):1113-24 [PubMed] Free Access to Full Article Related Publications
The role of plasma membrane transporters in cancer is receiving increasing attention in recent years. Several transporters for essential nutrients are up-regulated in cancer and serve as tumour promoters. Transporters could also function as tumour suppressors. To date, four transporters belonging to the SLC gene family have been identified as tumour suppressors. SLC5A8 is a Na(+)-coupled transporter for monocarboxylates. Among its substrates are the bacterial fermentation products butyrate and propionate and the ubiquitous metabolite pyruvate. The tumour-suppressive function of this transporter relates to the ability of butyrate, propionate and pyruvate to inhibit histone deacetylases (HDAC). SLC5A8 functions as a tumour suppressor in most tissues studied thus far, and provides a molecular link to Warburg effect, a characteristic feature in most cancers. It also links colonic bacteria and dietary fibre to the host. SLC26A3 as a tumour suppressor is restricted to colon; it is a Cl(-)/HCO(-) 3 exchanger, facilitating the efflux of HCO(-) 3 The likely mechanism for the tumour-suppressive function of SLC26A3 is related to intracellular pH regulation. SLC39A1 is a Zn(2+) transporter and its role in tumour suppression has been shown in prostate. Zn(2+) is present at high concentrations in normal prostate where it elicits its tumour-suppressive function. SLC22A18 is possibly an organic cation transporter, but the identity of its physiological substrates is unknown. As such, there is no information on molecular pathways responsible for the tumour-suppressive function of this transporter. It is likely that additional SLC transporters will be discovered as tumour suppressors in the future.

Shen C, Zhang H, Wang P, et al.
Deoxycholic acid (DCA) confers an intestinal phenotype on esophageal squamous epithelium via induction of the stemness-associated reprogramming factors OCT4 and SOX2.
Cell Cycle. 2016; 15(11):1439-49 [PubMed] Free Access to Full Article Related Publications
Barrett's esophagus (BE) is essentially a metaplasia in which the normal stratified squamous epithelium is replaced by columnar epithelium. This study focuses on the involvement of OCT4 and SOX2, 2 key cell-reprogramming factors, in the deoxycholic acid (DCA)-induced expression of the intestinal hallmarks Cdx2 and MUC2 using both in vivo and in vitro models. Up-regulated expression of OCT4 and down-regulated expression of SOX2 were observed in BE compared with normal esophagus and esophagitis. Consistent with the data in vivo, DCA induced time-dependent expression of OCT4 at both the mRNA and protein levels and decreased nuclear expression of SOX2 in Het-1A cells. Down-regulation of OCT4 expression by siRNA abrogated DCA-induced expression of Cdx2 and MUC2, whereas siRNA against SOX2 significantly upregulated the expression of both Cdx2 and MUC2. Our data indicate that both OCT4 and SOX2 play important roles in the development of BE triggered by bile acid reflux.

Fan T, Chen J, Zhang L, et al.
Bit1 knockdown contributes to growth suppression as well as the decreases of migration and invasion abilities in esophageal squamous cell carcinoma via suppressing FAK-paxillin pathway.
Mol Cancer. 2016; 15:23 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: There is growing evidence that Bit1 exerts different roles in the development and progression of human cancers. Although Bit1 was highly exhibited in ESCC tissues in our previous study, its roles and molecular mechanisms implicated in development and progression of ESCC remain unknown.
METHODS: Bit1 protein expression in ESCC cell lines and normal esophageal epithelial cell was detected by Western blotting. Bit1 protein expression mediated by Bit1 shRNA was investigated by Western blotting. MTT, migration assay, invasion experiment, ELISA and Flow cytometry were utilized to determine the effects of Bit1 knockdown on cell proliferation, migration, invasion and apoptosis, respectively. A xenograft model was used to examine in vivo tumourigenicity, and immunohistochemistry and TUNEL were utilized to evaluate the related protein expression and apoptosis. Gene microarray was determined by Agilent SurePrint G3 Human GE 8 × 60 K Microarray, the interaction of Bit1 and FAK proteins were detected by Immunoprecipitation and the key protein expressions of FAK-paxillin pathway were detected by Western blotting.
RESULTS: We found Bit1 expression in all human ESCC cell lines tested was significantly higher than that in normal esophageal epithelial cell Het-1A (P < 0.05), in which EC9706 presented the highest Bit1 level. Bit1 protein level was significantly downregulated at day 1 after transfection with specific shRNA against Bit1 (P < 0.05). At days 2 and 3, Bit1 level reached the lowest value after transfection with Bit1 shRNA. Moreover, Bit1 depletion contributed to growth inhibition in vitro and in vivo, reduced cell migration and invasion abilities, and induced cell apoptosis in EC9706 and TE1 cells. More importantly, Bit1 downregulation significantly lowered Bcl-2 and MMP-2 levels in EC9706 xenografted tumor tissues, meanwhile triggered apoptosis after treatment with different doses of Bit1 shRNA. Further gene microarray revealed that 23 genes in Bit1-RNAi group were markedly downregulated, whereas 16 genes were obviously upregulated. Notably, Bit1 intrinsically interacted with FAK protein in EC9706 cells. Moreover, paxillin was downregulated at mRNA and protein levels in Bit1 shRNA group, coupled with the decreases of FAK mRNA and protein expressions.
CONCLUSION: Bit1 may be an important regulator in cell growth, apoptosis, migration and invasion of ESCC via targeting FAK-paxillin pathway, and thereby combinative manipulation of Bit1 and FAK-paxillin pathway may be the novel and promising therapeutic targets for the patients with ESCC.

Altinoz MA, Elmaci I, Ince B, et al.
Hemoglobins, Hemorphins, and 11p15.5 Chromosomal Region in Cancer Biology and İmmunity with Special Emphasis for Brain Tumors.
J Neurol Surg A Cent Eur Neurosurg. 2016; 77(3):247-57 [PubMed] Related Publications
In systemic cancers, increased hemolysis leads to extracellular hemoglobin (HB), and experimental studies have shown its provoking role on tumor growth and metastasis. However, investigations have shown that HB chains presented by tumor vascular pericytes or serum protein complexes of HB could also induce antitumor immunity, which may be harnessed to treat refractory cancers and brain tumors. Mounting recent evidence shows that expression of HBs is not restricted to erythrocytes and that HBs exist in the cells of lung and kidney, in macrophages, and in neurons and glia of the central nervous system (CNS). HBs mediate coping with hypoxia and free radical stress in normal and tumor cells, and they are increased in certain tumors including breast, lung, colon, and squamous cell cancers. Recent studies showed HBs in meningioma, in the cyst fluid of craniopharyngioma, in the cerebrospinal fluid (CSF) of pediatric patients with posterior fossa tumors, and in glioblastoma cell lines. Hemorphins, abundant brain peptides formed via HB-chain cleavage, exert opioid activity and antiproliferative and immunomodifier effects. Hence mutations in HBs may modify brain tumorigenesis via influencing hemorphins and perturbing regulations of immune surveillance and cell growth in the neuroectodermal tissues. The β-globin gene cluster resides in the chromosome region 11p15.5, harboring important immunity genes and IGF2, H19, PHLDA2/TSSC3, TRIM3, and SLC22A18 genes associated with cancers and gliomas. 11p15.5 is a prominent region subject to epigenetic regulation. Thus the β-globin loci may exert haplotypal interactions with these. Some clues support this theory. It is well established that iron load induces liver cancer in thalassemia major; however iron load-independent associations also exist. Enhanced rates of hematologic malignancies are associated with HB Lepore, association of hemoglobin E with cholangiocarcinoma, and enhanced gastric cancer rates in the thalassemia trait. In the African Herero population, a mutant form of δ-globin is very prevalent, and this population has higher rates of pediatric brain tumors. Globins are also expressed in healthy endothelia and in tumoral vessels, indicating potential involvement in angiogenesis. Studies on HBs and their cleavage peptides in cancers and brain tumors may lead to innovative treatment strategies.

Zeng R, Huang JP, Li XF, et al.
Epb41l3 suppresses esophageal squamous cell carcinoma invasion and inhibits MMP2 and MMP9 expression.
Cell Biochem Funct. 2016; 34(3):133-41 [PubMed] Related Publications
EPB41L3 may play a role as a metastasis suppressor by supporting regular arrangements of actin stress fibres and alleviating the increase in cell motility associated with enhanced metastatic potential. Downregulation of epb41l3 has been observed in many cancers, but the role of this gene in esophageal squamous cell carcinoma (ESCC) remains unclear. Our study aimed to determine the effect of epb41l3 on ESCC cell migration and invasion. We investigated epb41l3 protein expression in tumour and non-tumour tissues by immunohistochemical staining. Expression in the non-neoplastic human esophageal cell line Het-1a and four ESCC cell lines - Kyse150, Kyse510, Kyse450 and Caes17 - was assessed by quantitative Polymerase Chain Reaction (qPCR) and Western blotting. Furthermore, an EPB41L3 overexpression plasmid and EPB41L3-specific small interfering RNA were used to upregulate EPB41L3 expression in Kyse150 cells and to downregulate EPB41L3 expression in Kyse450 cells, respectively. Cell migration and invasion were evaluated by wound healing and transwell assays, respectively. The expression levels of p-AKT, matrix metalloproteinase (MMP)2 and MMP9 were evaluated. Expression of epb41l3 was significantly lower in tumour tissues than in non-tumour tissues and in ESCC cell lines compared with the Het-1a cell line. Kyse450 and Caes17 cells exhibited higher expression of epb41l3 than Kyse150 and Kyse510 cells. Overexpressing epb41l3 decreased Kyse150 cell migration and invasion, whereas EPB41L3-specific small interfering RNA silencing increased these functions in Kyse450 cells. Furthermore, overexpressing epb41l3 led to downregulation of MMP2 and MMP9 in Kyse150 and Kyse510 cells. Our findings reveal that EPB41L3 suppresses tumour cell invasion and inhibits MMP2 and MMP9 expression in ESCC cells.

Amgoth C, Dharmapuri G, Kalle AM, Paik P
Nanoporous capsules of block co-polymers of [(MeO-PEG-NH)-b-(L-GluA)]-PCL for the controlled release of anticancer drugs for therapeutic applications.
Nanotechnology. 2016; 27(12):125101 [PubMed] Related Publications
Herein, new nanoporous capsules of the block co-polymers of MeO-PEG-NH-(L-GluA)10 and polycaprolactone (PCL) have been synthesized through a surfactant-free cost-effective self-assembled soft-templating approach for the controlled release of drugs and for therapeutic applications. The nanoporous polymer capsules are designed to be biocompatible and are capable of encapsulating anticancer drugs (e.g., doxorubicin hydrochloride (DOX) and imatinib mesylate (ITM)) with a high extent (∼279 and ∼480 ng μg(-1), respectively). We have developed a nanoformulation of porous MeO-PEG-NH-(L-GluA)10-PCL capsules with DOX and ITM. The porous polymer nanoformulations have been programmed in terms of the release of anticancer drugs with a desired dose to treat the leukemia (K562) and human carcinoma cells (HepG2) in vitro and show promising IC50 values with a very high mortality of cancer cells (up to ∼96.6%). Our nanoformulation arrests the cell divisions due to 'cellular scenescence' and kills the cancer cells specifically. The present findings could enrich the effectiveness of idiosyncratic nanoporous polymer capsules for use in various other nanomedicinal and biomedical applications, such as for killing cancer cells, immune therapy, and gene delivery.

Hirko KA, Willett WC, Hankinson SE, et al.
Healthy dietary patterns and risk of breast cancer by molecular subtype.
Breast Cancer Res Treat. 2016; 155(3):579-88 [PubMed] Free Access to Full Article Related Publications
We examined associations between dietary quality indices and breast cancer risk by molecular subtype among 100,643 women in the prospective Nurses' Health Study (NHS) cohort, followed from 1984 to 2006. Dietary quality scores for the Alternative Healthy Eating Index (AHEI), alternate Mediterranean diet (aMED), and Dietary Approaches to Stop Hypertension (DASH) dietary patterns were calculated from semi-quantitative food frequency questionnaires collected every 2-4 years. Breast cancer molecular subtypes were defined according to estrogen receptor (ER), progesterone receptor, human epidermal growth factor 2 (HER2), cytokeratin 5/6 (CK5/6), and epidermal growth factor receptor status from immunostained tumor microarrays in combination with histologic grade. Cox proportional hazards models, adjusted for age and breast cancer risk factors, were used to estimate hazard ratios (HRs) and 95 % confidence intervals (CIs). Competing risk analyses were used to assess heterogeneity by subtype. We did not observe any significant associations between the AHEI or aMED dietary patterns and risk of breast cancer by molecular subtype. However, a significantly reduced risk of HER2-type breast cancer was observed among women in 5th versus 1st quintile of the DASH dietary pattern [n = 134 cases, Q5 vs. Q1 HR (95 % CI) = 0.44 (0.25-0.77)], and the inverse trend across quintiles was significant (p trend = 0.02). We did not observe any heterogeneity in associations between AHEI (p het = 0.25), aMED (p het = 0.71), and DASH (p het = 0.12) dietary patterns and breast cancer by subtype. Adherence to the AHEI, aMED, and DASH dietary patterns was not strongly associated with breast cancer molecular subtypes.

Sunamura N, Ohira T, Kataoka M, et al.
Regulation of functional KCNQ1OT1 lncRNA by β-catenin.
Sci Rep. 2016; 6:20690 [PubMed] Free Access to Full Article Related Publications
Long noncoding RNAs (lncRNAs) have been implicated in many biological processes through epigenetic mechanisms. We previously reported that KCNQ1OT1, an imprinted antisense lncRNA in the human KCNQ1 locus on chromosome 11p15.5, is involved in cis-limited silencing within an imprinted KCNQ1 cluster. Furthermore, aberration of KCNQ1OT1 transcription was observed with a high frequency in colorectal cancers. However, the molecular mechanism of the transcriptional regulation and the functional role of KCNQ1OT1 in colorectal cancer remain unclear. Here, we show that the KCNQ1OT1 transcriptional level was significantly increased in human colorectal cancer cells in which β-catenin was excessively accumulated in the nucleus. Additionally, overexpression of β-catenin resulted in an increase in KCNQ1OT1 lncRNA-coated territory. On the other hand, knockdown of β-catenin resulted in significant decrease of KCNQ1OT1 lncRNA-coated territory and an increase in the mRNA expression of the SLC22A18 and PHLDA2 genes that are regulated by KCNQ1OT1. We showed that β-catenin can promote KCNQ1OT1 transcription through direct binding to the KCNQ1OT1 promoter. Our evidence indicates that β-catenin signaling may contribute to development of colorectal cancer by functioning as a novel lncRNA regulatory factor via direct targeting of KCNQ1OT1.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SLC22A1L, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999