MIRLET7D

Locus Summary

Gene:MIRLET7D; microRNA let-7d
Aliases: LET7D, let-7d, MIRNLET7D, hsa-let-7d
Location:9q22.32
Summary:microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]
Databases:miRBase, OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 31 August, 2019

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (12)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

MicroRNA Function

Numbers shown below represent number of publications held in OncomiRDB database for Oncogenic and Tumor-Suppressive MicroRNAs.

TissueTarget Gene(s)Regulator(s)MIRLET7D Function in CancerEffect
head and neck (1)
-oral squamous cell carcinoma (1)
reverse epithelial-mesenchymal transition (1)
inhibit cell migration (1)
inhibit cell invasion (1)
tumor-suppressive (1)
prostate (1)
-prostate cancer (1)
PBX3 (1)

Source: OncomiRDB Wang D. et al. Bioinformatics 2014, 30(15):2237-2238.

Latest Publications: MIRLET7D (cancer-related)

Zheng M, Hou L, Ma Y, et al.
Exosomal let-7d-3p and miR-30d-5p as diagnostic biomarkers for non-invasive screening of cervical cancer and its precursors.
Mol Cancer. 2019; 18(1):76 [PubMed] Free Access to Full Article Related Publications
Cervical cancer screening through detection and treatment of high-grade cervical intraepithelial neoplasia (CIN) is most successful in cancer prevention. However, the accuracy of the current cervical cancer screening tests is still low. The aim of this study was to develop a more accurate method based on circulating exosomal miRNAs. The miRNA sequencing was performed to identify candidate exosomal miRNAs as diagnostic biomarkers in 121 plasma samples from healthy volunteers, cervical carcinoma patients, and CIN patients. A panel with eight differentially expressed exosomal miRNAs was identified to distinguish patients in the CIN II+ group (including advanced CIN II patients) from those in the CIN I- group (including CIN I patients and healthy volunteers). Let-7d-3p and miR-30d-5p showed significant difference between cervical tumors and adjacent normal tissues (P < 0.005), exhibited a consistent trend in plasma samples, and were further validated in 203 independent plasma samples. Integrating these two miRNAs yielded an AUC value of 0.828 to distinguish patients in CIN II+ group from those in CIN I- group. Further integrating them into a cytological test-based model resulted in a higher AUC of 0.887, while the AUC value based on the cytological test alone was 0.766. In summary, plasma exosomal miR-30d-5p and let-7d-3p are valuable diagnostic biomarkers for non-invasive screening of cervical cancer and its precursors. Further validation using large sample sizes is required for clinical diagnosis.

Kolenda T, Guglas K, Teresiak A, et al.
Low let-7d and high miR-205 expression levels positively influence HNSCC patient outcome.
J Biomed Sci. 2019; 26(1):17 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Head and neck squamous carcinoma (HNSCC) is one of the most invasive types of cancer with high mortality. A previous study has indicated that low levels of let-7d and miR-205 in HNSCC patients are correlated with poor survival. Let-7d and miR-205 are tumor suppressors and regulators of epithelial-to-mesenchymal transition (EMT). However, it is unclear if let-7d and miR-205 together influence cancer cells.
AIM: To determine if let-7d and miR-205 expression levels influence HNSCC patient outcome.
METHODS: The TCGA expression data for let-7d, miR-205 and their targets as well as clinical data were downloaded from cBioPortal and starBase v2.0 for 307 patients. The expression levels of let-7d and miR-205 were verified according to clinicopathological parameters. The let-7d and miR-205 high- and low-expression groups as well as disease-free survival (DFS), overall survival (OS) and expression levels of genes related to EMT, cancer stem cells, metastasis, cell cycle, drug response and irradiation response were investigated.
RESULTS: Let-7d and miR-205 were frequently upregulated in HNSCC compared to normal samples, and ROC analysis showed high discrimination ability for let-7d and miR-205 (area 0.7369 and 0.7739, respectively; p < 0.0001). Differences between expression levels of let-7d or miR-205 and grade, angiolymphatic invasion, perineural invasion and alcohol consumption were indicated. No differences were observed in N-stage, tumor localization, gender or patient age. Patients with lower let-7d levels and higher miR-205 levels had significantly better OS (p = 0.0325) than patients with higher let-7d levels and lower miR-205 levels. In the low let-7d level and high miR-205 level group, a lower percentage of more advanced cancers was observed. The analysis of genes related to EMT, cancer stem cells, metastasis, cell cycle, drug response and irradiation response revealed a distinct phenotype of analyzed groups.
CONCLUSIONS: The present findings indicated that let-7d down-regulation and miR-205 overexpression create a unique cell phenotype with different behavior compared to cells with upregulated let-7d and down-regulated miR-205. Thus, let-7d and miR-205 are good candidates for new HNSCC biomarkers.

Ramezanpour M, Daei P, Tabarzad M, et al.
Preliminary study on the effect of nucleolin specific aptamer-miRNA let-7d chimera on Janus kinase-2 expression level and activity in gastric cancer (MKN-45) cells.
Mol Biol Rep. 2019; 46(1):207-215 [PubMed] Related Publications
Recently, much attention has been focused on the use of miRNAs in cancer treatment. The role of proto-oncogene Janus kinase-2 (JAK-2) in proliferation and survival of gastric cancer has been previously documented. The aim of this study was to evaluate the effect of a chimera consisted of nucleolin specific aptamer (NCL-Apt) and miRNA let-7d on JAK2 expression level and activity in gastric cancer cells. NCL-Apt-miRNA let-7d chimera was prepared by two methods. Gastric cancer (MKN-45) cell line and control cell line of human dermal fibroblast (HDF) were treated with the chimera and the changes in JAK2 expression and activity were determined using real-time PCR and ELISA techniques, respectively. In MKN-45 cells, the chimera caused significant decrease in JAK2 expression level and activity compared to the aptamer alone and miRNA mimic negative control. Nevertheless, transfected miRNA let-7d showed remarkable reduction in the expression level of JAK2 in comparison with control state in both MKN-45 and HDF, confirmed unspecific effect of let-7d on normal and cancerous cells. With regard to the synergic effect of this chimera on JAK2 activity, it might be viewed as a therapeutic candidate in gastric cancer. However, further studies are warranted to prove it.

Bouyssou JM, Liu CJ, Bustoros M, et al.
Profiling of circulating exosomal miRNAs in patients with Waldenström Macroglobulinemia.
PLoS One. 2018; 13(10):e0204589 [PubMed] Free Access to Full Article Related Publications
Waldenström Macroglobulinemia (WM) is a low-grade B-cell lymphoma characterized by disease progression from IgM MGUS to asymptomatic and then symptomatic disease states. We profiled exosomes from the peripheral blood of patients with WM at different stages (30 smoldering/asymptomatic WM, 44 symptomatic WM samples and 10 healthy controls) to define their role as potential biomarkers of disease progression. In this study, we showed that circulating exosomes and their miRNA content represent unique markers of the tumor and its microenvironment. We observed similar levels of miRNAs in exosomes from patients with asymptomatic (smoldering) and symptomatic WM, suggesting that environmental and clonal changes occur in patients at early stages of disease progression before symptoms occur. Moreover, we identified a small group of miRNAs whose expression correlated directly or inversely with the disease status of patients, notably the known tumor suppressor miRNAs let-7d and the oncogene miR-21 as well as miR-192 and miR-320b. The study of these miRNAs' specific effect in WM cells could help us gain further insights on the mechanisms underlying WM pathogenesis and reveal their potential as novel therapeutic targets for this disease.

Wei Y, Liu G, Wu B, et al.
Let-7d Inhibits Growth and Metastasis in Breast Cancer by Targeting Jab1/Cops5.
Cell Physiol Biochem. 2018; 47(5):2126-2135 [PubMed] Related Publications
BACKGROUND/AIMS: MicroRNAs (miRNAs) regulate the expressions of cancer-related genes, and are involved in the development and progression of various human cancers. Here, we performed further analyses to determine whether let-7d is functionally linked to Jab1 in breast cancer.
METHODS: In situ hybridization and immunohistochemical analyses were used to determine the level of let-7d and Jab1 in breast cancer clinical specimens and its correlation with clinicopathological data. Let-7d overexpressing breast cancer cell lines combined with mouse models bearing cell-derived xenografts were used to assess the functional role of let-7d both in vitro and in vivo.
RESULTS: In this study, we found that let-7d was downregulated in breast cancer tissues, coupled with the elevations of Jab1 protein expressions, compared with paired adjacent noncancerous breast tissues. Let-7d overexpression significantly suppressed the proliferation and invasion in MCF-7 and MDA-MB-231 cells. Dual luciferase reporter assay indicated that Jab1 was the direct target of let-7d. Stepwise studies from in vitro and in vivo experiments indicated that let-7d overexpression inhibited cell growth and decreased Jab1 expressions in breast cancer cells and nude mice tumor tissues. Statistical analyses demonstrated that breast cancer patients with low levels of let-7d or high levels of Jab1 had a significant correlation with worse prognosis.
CONCLUSION: These findings provide novel insights into molecular mechanism of let-7d and Jab1 in tumor development and progression of breast cancer, and thus let-7d/Jab1 are novel potential therapeutic targets for breast cancer patients.

Jiang J, Liu HL, Tao L, et al.
Let‑7d inhibits colorectal cancer cell proliferation through the CST1/p65 pathway.
Int J Oncol. 2018; 53(2):781-790 [PubMed] Related Publications
Cystatin SN (cystatin 1, CST1) is a member of the cystatin superfamily which inhibits the proteolytic activity of cysteine proteases. CST1 is a tumor biomarker that provides useful information for the diagnosis of esophageal, gastric and colorectal carcinomas. MicroRNAs (miRNAs or miRs) play an important role in tumor cell proliferation. However, the exact role of let‑7d and CST1 in colon cancer remains unknown. The aim of this study was to assess whether let‑7d inhibits colorectal carcinogenesis through the CST1/p65 pathway, and determine whether it may be used as a potential target for clinical therapy. Microarray analysis of mRNAs extracted from colon cancer and normal tissues was performed. The results of gene expression microanalysis revealed that CST1 expression was upregulated in colon cancer compared with normal tissues. In addition, the upregulation of CST1 expression and the downregulation of let‑7d expression in patients with colon cancer and in several colorectal cancer cell lines were confirmed by reverse transcription-quantitative PCR (RT‑qPCR), immunohistochemistry and western blot analysis. In addition, siRNA targeting CST1 (CST1‑siRNA) and let‑7d-mimics were used in the HCT116 cells, and the results revealed that CST1 and let‑7d played a role in colorectal cancer cell proliferation. Let‑7d inhibited colorectal carcinogenesis through the CST1/p65 pathway. Thus, the findings of the present study indicate that CST1 may be a potential target for the future clinical therapy of colorectal cancer.

Wang BG, Jiang LY, Xu Q
A comprehensive evaluation for polymorphisms in
Biosci Rep. 2018; 38(4) [PubMed] Free Access to Full Article Related Publications
miRNA polymorphisms had potential to be biomarkers for cancer susceptibility and prognosis. The mature

García-Vázquez R, Gallardo Rincón D, Ruiz-García E, et al.
let-7d-3p is associated with apoptosis and response to neoadjuvant chemotherapy in ovarian cancer.
Oncol Rep. 2018; 39(6):3086-3094 [PubMed] Related Publications
Altered expression of microRNAs contributes to the heterogeneous biological behavior of human malignancies and it may correlate with the clinical pathological features of patients. The let-7 microRNA family is frequently downregulated in human cancers and its aberrant expression may be a useful marker for prediction of the clinical response to therapy in patients. In the present study, we analyzed the expression of three members of the let-7 family (let-7a-3p, let-7d-3p and let-7f), which remains largely uncharacterized in ovarian cancer tissues. We also investigated the function of let-7d-3p in the apoptosis and sensitization to chemotherapy in ovarian cancer cells. Our data from stem-loop quantitative RT-PCR showed that expression of let-7a-3p and let-7d-3p, but not let-7f, was significantly (P<0.04) upregulated in ovarian tumors relative to that noted in normal ovarian tissues. Markedly, an increased expression of let‑7d-3p (also known as let-7d-3*) was associated with positive response to carboplatin/paclitaxel treatment in ovarian cancer patients. To investigate the biological relevance of let‑7d-3p, we knocked down its expression in SKOV-3 ovarian cancer cell line using antagomiRs. Loss of function analysis showed that inhibition of let-7d-3p significantly (P<0.05) impaired cell proliferation and activated apoptosis. In contrast, scratch/wound healing and Transwell chamber assays showed that migration and invasion abilities were not affected in the let-7d-3p-deficient SKOV-3 cancer cells. Notably, Annexin V assays showed a significant (P<0.05) increase in cell death of cancer cells treated with the let-7d-3p inhibitor plus carboplatin indicating a synergistic effect of the drug with antagomiR therapy. Gene ontology classification of predicted targets of let-7d-3p identified a number of genes involved in cellular pathways associated with therapy resistance such as ABC transporters, HIF-1, RAS and ErbB signaling. In summary, our findings showed that inhibition of let-7d-3 activates apoptosis and that its upregulation is associated with a positive response of ovarian cancer patients to carboplatin/paclitaxel chemotherapy.

Sannigrahi MK, Sharma R, Panda NK, Khullar M
Role of non-coding RNAs in head and neck squamous cell carcinoma: A narrative review.
Oral Dis. 2018; 24(8):1417-1427 [PubMed] Related Publications
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide with high recurrence, metastasis, and poor treatment outcome. Recent studies have reported that non-coding RNA (ncRNA) might play critical role in regulating different types of cancer. MicroRNAs (miRs) are short ncRNAs (20-25 nucleotides) responsible for post-transcriptional regulation of gene expression and may have a role in oncogenesis by acting as oncomiRs or tumor suppressor miRs. Long non-coding RNAs (lncRNAs) are heterogenous group of ncRNAs more than 200 nucleotides long, can act in cis and/or in trans, and have been also implicated in carcinogenesis. These molecules have been suggested to be promising candidates as diagnostic and prognostic biomarkers and for development of novel therapeutic approaches. In this review, we have summarized recent findings on role of these ncRNAs in HPV-negative (HPV-ve) and HPV-positive (HPV+ve) HNSCC. The available literature supports differential expression of both microRNAs and long non-coding RNAs, which include oncogenic ncRNAs (miR-21, miR-31, miR-155, miR-211, HOTAIR, and MALAT1) and tumor suppressor ncRNAs (let7d, miR-17, miR-375, miR-139, and MEG3) in HPV+ve HNSCC tumors as compared to HPV-ve tumors and they have distinct role in the pathophysiology of these two types of HNSCCs.

Fedorko M, Juracek J, Stanik M, et al.
Detection of let-7 miRNAs in urine supernatant as potential diagnostic approach in non-metastatic clear-cell renal cell carcinoma.
Biochem Med (Zagreb). 2017; 27(2):411-417 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Urinary microRNAs (miRNAs) are emerging as a clinically useful tool for early and non-invasive detection of various types of cancer. The aim of this study was to evaluate whether let-7 family miRNAs differ in their urinary concentrations between renal cell carcinoma (RCC) cases and healthy controls.
MATERIALS AND METHODS: In the case-control study, 69 non-metastatic clear-cell RCC patients and 36 gender/age-matched healthy controls were prospectively enrolled. Total RNA was purified from cell-free supernatant of the 105 first morning urine specimens. Let-7 family miRNAs were determined in cell-free supernatant using quantitative miRNA real-time reverse-transcription PCR and absolute quantification approach.
RESULTS: Concentrations of all let-7 miRNAs (let-7a, let-7b, let-7c, let-7d, let-7e and let-7g) were significantly higher in urine samples obtained from RCC patients compared to healthy controls (P < 0.001; P < 0.001; P = 0.005; P = 0.006; P = 0.015 and P = 0.002, respectively). Subsequent ROC analysis has shown that let-7a concentration possesses good ability to differentiate between cases and controls with area under curve being 0.8307 (sensitivity 71%, specificity 81%).
CONCLUSIONS: We have shown that let-7 miRNAs are abundant in the urine samples of patients with clear-cell RCC, and out of six let-7 family members, let-7a outperforms the others and presents promising non-invasive biomarker for the detection of RCC.

Lamperska KM, Kolenda T, Teresiak A, et al.
Different levels of let-7d expression modulate response of FaDu cells to irradiation and chemotherapeutics.
PLoS One. 2017; 12(6):e0180265 [PubMed] Free Access to Full Article Related Publications
The implication of the let-7 family in cancer development is multifaceted. The family acts as tumor suppressor miRNA although overexpression of let-7 has also been described in many types of cancer, including head and neck squamous cell carcinoma (HNSCC). The aim of this study includes whether different expression levels of let-7d has an influence on chemo- and radiosensitivity. FaDu cell line models with a gradually increased level of let-7d (models from A to E) were generated with the lentiviral system. Expression levels of pluripotency, chemo-radioresistance/apoptosis, and targets of mRNAs were analyzed by real-time reverse transcription-PCR (qRT-PCR). Radiosensitivity was analyzed using a clonogenic assay after irradiation. Response to cisplatin, 5-FU, doxorubicin, and paclitaxel was done with MTT assay. Statistically significant decrease of K-RAS (p = 0.0369) and CASPASE3 (p = 0.0342) were observed with the growing expression level of let-7d. Cisplatin, 5-FU and doxorubicin caused similar decreased of cell survival with the increase of let-7d level (p = 0.004, post-trend p = 0.046; p = 0.004, post trend p = 0.0005 and p<0.0001, post trend p = 0.0001, respectively). All models were resistant to paclitaxel, irrespective of let-7d expression levels. Only two of the generated models (A and C) were radiosensitive (p = 0.0002).
CONCLUSION: the above results indicated that the level of let-7d expression is an important factor for cell response to irradiation and chemotherapeutics.

Zheng X, Niu L, Wei D, et al.
Label-free detection of microRNA based on coupling multiple isothermal amplification techniques.
Sci Rep. 2016; 6:35982 [PubMed] Free Access to Full Article Related Publications
MicroRNA (miRNA) was a promising class of cancer biomarkers. Here we developed a label-free method for sensitive measurement of let-7d miRNA based on multiple amplification techniques. The primer will bind to the duplex strand DNA that was formed by stem-loop template and target let-7d to initiate strand displacement amplification (SDA) in tandem. The released single strand DNA will be a primer to bind the circular template to initiate rolling circle amplification (RCA). The products based on multiple amplifications will be detected by a standard fluorimeter with N-methyl mesoporphyrin IX (NMM) as the fluorescent indicator. The proposed method exhibited excellent selectivity and high sensitivity with a detection limit of as low as 1.5 × 10

Sun H, Ding C, Zhang H, Gao J
Let‑7 miRNAs sensitize breast cancer stem cells to radiation‑induced repression through inhibition of the cyclin D1/Akt1/Wnt1 signaling pathway.
Mol Med Rep. 2016; 14(4):3285-92 [PubMed] Related Publications
The tumor-suppressive let-7 family of microRNAs (miRNAs) has been previously identified to induce cell apoptosis, proliferation‑inhibition and suppression of the self‑renewal capacities of cancer stem cells (CSCs). However, let‑7‑mediated sensitization of tumors to radiation treatment remains to be investigated fully in triple negative breast cancer (TNBC), of which the clinical treatment is challenging. The inhibitory effect of let‑7 miRNAs on the self‑renewal ability of CSCs from TNBC was investigated. It was identified that radiation inhibited the self‑renewal ability of TNBC stem cells by inhibiting cyclin D1 and protein kinase B (Akt1) phosphorylation. Let‑7d stimulates radiation‑induced tumor repression, exerting synergistic effects with radiotherapy on stem cell renewal. Through western blotting, immunofluorescence and a luciferase assay, it was identified that reduced cyclin D1/Akt1/wingless type MMTV integration site family member 1 (Wnt1) signaling activity accounts for the let‑7‑induced radiation sensitization. Let‑7 directly inhibits cyclin D1 expression, resulting in low phosphorylation of Akt1, which is critical for the let‑7‑induced inhibition of mammosphere numbers. The let‑7d‑induced Akt1 inhibition contributed to tumor repression, with similar results to those obtained with Akt inhibitors. Furthermore, it was identified that the inhibition of Wnt1 is critical for the functioning of let‑7d, and that addition of recombinant Wnt1 abolished the effects of let‑7d on sensitization to radiotherapy. Let‑7d is suggested to be a promising therapeutic agent in the treatment of TNBC by targeting CSCs and sensitizing tumors to radiotherapy via inhibition of cyclin D1/Akt1/Wnt1 signaling.

Wang Z, Lin S, Zhang J, et al.
Loss of MYC and E-box3 binding contributes to defective MYC-mediated transcriptional suppression of human MC-let-7a-1~let-7d in glioblastoma.
Oncotarget. 2016; 7(35):56266-56278 [PubMed] Free Access to Full Article Related Publications
Previously, we reported that MYC oncoprotein down-regulates the transcription of human MC-let-7a-1~let-7d microRNA cluster in hepatocarcinoma (HCC). Surprisingly, in silico analysis indicated that let-7 miRNA expression levels are not reduced in glioblastoma (GBM). Here we investigated the molecular basis of this differential expression. Using human GBM U87 and U251 cells, we first demonstrated that forced over-expression of MYC indeed could not down-regulate the expression of human MC-let-7a-1~let-7d microRNA cluster in GBM. Furthermore, analysis of MC-let-7a-1~let-7d promoter in GBM indicated that MYC failed to inhibit the promoter activity. Pearson's correlation and Linear Regression analysis using the expression data from GSE55092 (HCC) and GSE4290 (GBM) demonstrated a converse relationship of MC-let-7a-1~let-7d and MYC only in HCC but not in GBM. To understand the underlying mechanisms, we examined whether MYC could bind to the non-canonical E-box 3 located in the promoter of MC-let-7a-1~let-7d. Results from both chromatin immune-precipitation (ChIP) and super-shift assays clearly demonstrated the loss of MYC and E-box 3 binding in GBM, suggesting for the first time that a defective MYC and E-box3 binding in GBM is responsible for the differential MYC mediated transcriptional inhibition of MC-let-7a-1~let-7d and potentially other tumor suppressors. MYC and let-7 are key oncoprotein and tumor suppressor, respectively. Understanding the molecular mechanisms of their regulations will provide new insight and have important implications in the therapeutics of GBM as well as other cancers.

Napoli M, Venkatanarayan A, Raulji P, et al.
ΔNp63/DGCR8-Dependent MicroRNAs Mediate Therapeutic Efficacy of HDAC Inhibitors in Cancer.
Cancer Cell. 2016; 29(6):874-888 [PubMed] Free Access to Full Article Related Publications
ΔNp63 is an oncogenic member of the p53 family and acts to inhibit the tumor-suppressive activities of the p53 family. By performing a chemical library screen, we identified histone deacetylase inhibitors (HDACi) as agents reducing ΔNp63 protein stability through the E3 ubiquitin ligase, Fbw7. ΔNp63 inhibition decreases the levels of its transcriptional target, DGCR8, and the maturation of let-7d and miR-128, which we found to be critical for HDACi function in vitro and in vivo. Our work identified Fbw7 as a predictive marker for HDACi response in squamous cell carcinomas and lymphomas, and unveiled let-7d and miR-128 as specific targets to bypass tumor resistance to HDACi treatment.

Manikandan M, Deva Magendhra Rao AK, Arunkumar G, et al.
Oral squamous cell carcinoma: microRNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism.
Mol Cancer. 2016; 15:28 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The advantages and utility of microRNAs (miRNAs) as diagnostic and prognostic cancer markers is at the vanguard in recent years. In this study, we attempted to identify and validate the differential expression of miRNAs in oral squamous cell carcinoma (OSCC), to correlate their expression with the clinico-pathological profile of tumours and to identify the signaling pathways through which the aberrantly expressed miRNAs effect tumourigenesis.
METHODS: miRCURY LNA™ array with probes specific to 1168 miRNAs and TaqMan assays specific for 10 miRNAs was employed to evaluate and validate miRNA expression in a discovery cohort (n = 29) and validation cohort (n = 61) of primary OSCC tissue specimens, respectively. A computational pipeline with sequential integration of data from miRTarBase, CytoScape, UniProtKB and DIANA-miRPath was utilized to map the target genes of deregulated miRNAs and associated molecular pathways.
RESULTS: Microarray profiling identified 46 miRNAs that were differentially expressed in OSCC. Unsupervised clustering demonstrated a high degree of molecular heterogeneity across the tumour samples as the clusters did not represent any of their clinico-pathological characteristics. The differential expression of 10 miRNAs were validated by RT-qPCR (let-7a, let-7d, let-7f and miR-16 were downregulated while miR-29b, miR-142-3p, miR-144, miR-203, and miR-223 were upregulated in OSCC; the expression of miR-1275 was variable in tumours, with high levels associated to regional lymph node invasion; additionally, miR-223 exhibited an association with advanced tumour stage/size). In silico analyses of the experimentally confirmed target genes of miRNAs revamp the relationship of upregulated miRNAs with tumour suppressor genes and of downregulated miRNAs with oncogenes. Further, the differentially expressed miRNAs may play a role by simultaneously activating genes of PI3K/Akt signaling on one hand and by repressing genes of p53 signaling pathway on the other.
CONCLUSIONS: The identified differentially expressed miRNAs and signaling pathways deregulated in OSCC have implications for the development of novel therapeutic strategies. To the best of our knowledge, this is the first report to show the association of miR-1275 with nodal invasion and the upregulation of miR-144 in OSCC.

Johnson JJ, Miller DL, Jiang R, et al.
Protease-activated Receptor-2 (PAR-2)-mediated Nf-κB Activation Suppresses Inflammation-associated Tumor Suppressor MicroRNAs in Oral Squamous Cell Carcinoma.
J Biol Chem. 2016; 291(13):6936-45 [PubMed] Free Access to Full Article Related Publications
Oral cancer is the sixth most common cause of death from cancer with an estimated 400,000 deaths worldwide and a low (50%) 5-year survival rate. The most common form of oral cancer is oral squamous cell carcinoma (OSCC). OSCC is highly inflammatory and invasive, and the degree of inflammation correlates with tumor aggressiveness. The G protein-coupled receptor protease-activated receptor-2 (PAR-2) plays a key role in inflammation. PAR-2 is activated via proteolytic cleavage by trypsin-like serine proteases, including kallikrein-5 (KLK5), or by treatment with activating peptides. PAR-2 activation induces G protein-α-mediated signaling, mobilizing intracellular calcium and Nf-κB signaling, leading to the increased expression of pro-inflammatory mRNAs. Little is known, however, about PAR-2 regulation of inflammation-related microRNAs. Here, we assess PAR-2 expression and function in OSCC cell lines and tissues. Stimulation of PAR-2 activates Nf-κB signaling, resulting in RelA nuclear translocation and enhanced expression of pro-inflammatory mRNAs. Concomitantly, suppression of the anti-inflammatory tumor suppressor microRNAs let-7d, miR-23b, and miR-200c was observed following PAR-2 stimulation. Analysis of orthotopic oral tumors generated by cells with reduced KLK5 expression showed smaller, less aggressive lesions with reduced inflammatory infiltrate relative to tumors generated by KLK5-expressing control cells. Together, these data support a model wherein KLK5-mediated PAR-2 activation regulates the expression of inflammation-associated mRNAs and microRNAs, thereby modulating progression of oral tumors.

Luan J, Wang J, Su Q, et al.
Meta-analysis of the differentially expressed microRNA profiles in nasopharyngeal carcinoma.
Oncotarget. 2016; 7(9):10513-21 [PubMed] Free Access to Full Article Related Publications
MicroRNAs(miRNAs), as non-coding molecules, were proved to be correlated with gene expression in naspharyngeal carcinoma (NPC) development. In this research, a comprehensive meta-analysis of eight independent miRNA expression studies in NPC was preformed by using robust rank aggregation method (RRA), which contained a total of 775 tumor and 227 non-cancerous samples. There were 7 significant dysregulated miRNAs identified including three increased (miR-483-5p, miR-29c-3p and miR-205-5p) and four decreased (miR-29b-3p, let-7d-5p, miR-100- 5p and let-7g-5p) miRNAs. Subsequently, the miRNA target prediction and pathway enrichment analysis were carried out to find out the biological and functional relevant genes involved in the meta-signature miRNA regulation. Finally, several signaling and cancer pathogenesis pathways were suggested to be more frequently associated with the progression of NPC. In this research the meta-signature miRNA identified may be used to develop a series of diagnostic and prognostic biomarkers for NPC that serve specificity for use in clinics.

Di Fiore R, Drago-Ferrante R, Pentimalli F, et al.
Let-7d miRNA Shows Both Antioncogenic and Oncogenic Functions in Osteosarcoma-Derived 3AB-OS Cancer Stem Cells.
J Cell Physiol. 2016; 231(8):1832-41 [PubMed] Related Publications
Osteosarcoma (OS), an aggressive highly invasive and metastatic bone-malignancy, shows therapy resistance and recurrence, two features that likely depend on cancer stem cells (CSCs), which hold both self-renewing and malignant potential. So, effective anticancer therapies against OS should specifically target and destroy CSCs. We previously found that the let-7d microRNA was downregulated in the 3AB-OS-CSCs, derived from the human OS-MG63 cells. Here, we aimed to assess whether let-7d modulation affected tumorigenic and stemness properties of these OS-CSCs. We found that let-7d-overexpression reduced cell proliferation by decreasing CCND2 and E2F2 cell-cycle-activators and increasing p21 and p27 CDK-inhibitors. Let-7d also decreased sarcosphere-and-colony forming ability, two features associated with self-renewing, and it reduced the expression of stemness genes, including Oct3/4, Sox2, Nanog, Lin28B, and HMGA2. Moreover, let-7d induced mesenchymal-to-epithelial-transition, as shown by both N-Cadherin-E-cadherin-switch and decrease in vimentin. Surprisingly, such switch was accompanied by enhanced migratory/invasive capacities, with a strong increase in MMP9, CXCR4 and VersicanV1. Let-7d- overexpression also reduced cell sensitivity to apoptosis induced by both serum-starvation and various chemotherapy drugs, concomitant with decrease in caspase-3 and increase in BCL2 expression. Our data suggest that let-7d in 3AB-OS-CSCs could induce plastic-transitions from CSCs-to-non-CSCs and vice-versa. To our knowledge this is the first study to comprehensively examine the expression and functions of let-7d in OS-CSCs. By showing that let-7d has both tumor suppressor and oncogenic functions in this context, our findings suggest that, before prospecting new therapeutic strategies based on let-7d modulation, it is urgent to better define its multiple functions. J. Cell. Physiol. 231: 1832-1841, 2016. © 2015 Wiley Periodicals, Inc.

Ozcan O, Kara M, Yumrutas O, et al.
MTUS1 and its targeting miRNAs in colorectal carcinoma: significant associations.
Tumour Biol. 2016; 37(5):6637-45 [PubMed] Related Publications
Deregulated microRNA (miRNA) expression has been shown to be involved in the pathogenesis of several types of cancers including colorectal cancer (CRC). Thus, determining miRNA targets of genes that play critical role in the malignant transformation is very important. Here, expression levels of tumor suppressor microtubule-associated tumor suppressor 1 (MTUS1) and its regulatory miRNAs were reported. Predicted and validated targets of MTUS1 gene was determined by a computational approach. Expressions of MTUS1 and miRNAs were determined by using 96.96 Dynamic Array™ integrated fluidic circuit (Fluidigm). As a result, MTUS1 levels were found to be diminished in formalin-fixed, paraffin-embedded (FFPE) tissue samples of CRC patients compared to controls. Also, several of MTUS1 targeting miRNAs were found to be upregulated in CRC samples (miR-373-3p, 183-5p, 142-5p, 200c-3p, 19a-3p, -20a-5p, -181a-5p, -184, -181d-5p, -372-3p, 27b-3p, 98-5p, -let-7i-5p, -let-7d-5p, -let-7g-5p, -let-7b-5p, and -let-7c-5p). Of these miRNAs, miR-135b-5p, -373-3p, 183-5p, 142-5p, 200c-3p, 19a-3p showed marked expression levels. In contrast, expression levels of let-7a-5p, 7e-5p, 7f-5p, hsa-miR-125a-5p, and 125b-5p were found to be downregulated in CRC tissues. Accordingly, some of the overexpressed miRNAs especially the miR-135b-5p, -373-3p, 183-5p, 142-5p, 200c-3p, and 19a-3p may play key roles in CRC pathophysiology through MTUS1. In contrast, let-7a-5p, 7e-5p, 7f-5p, miR-125a-5p, and 125b-5p may play important roles in CRC carcinogenesis independent from the MTUS1. In conclusion, MTUS1 targeting miRNAs may play key roles in the development of CRC by downregulating tumor suppressor MTUS1.

Gasparini P, Cascione L, Landi L, et al.
microRNA classifiers are powerful diagnostic/prognostic tools in ALK-, EGFR-, and KRAS-driven lung cancers.
Proc Natl Acad Sci U S A. 2015; 112(48):14924-9 [PubMed] Free Access to Full Article Related Publications
microRNAs (miRNAs) can act as oncosuppressors or oncogenes, induce chemoresistance or chemosensitivity, and are major posttranscriptional gene regulators. Anaplastic lymphoma kinase (ALK), EGF receptor (EGFR), and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) are major drivers of non-small cell lung cancer (NSCLC). The aim of this study was to assess the miRNA profiles of NSCLCs driven by translocated ALK, mutant EGFR, or mutant KRAS to find driver-specific diagnostic and prognostic miRNA signatures. A total of 85 formalin-fixed, paraffin-embedded samples were considered: 67 primary NSCLCs and 18 matched normal lung tissues. Of the 67 primary NSCLCs, 17 were echinoderm microtubule-associated protein-like 4-ALK translocated (ALK(+)) lung cancers; the remaining 50 were not (ALK(-)). Of the 50 ALK(-) primary NSCLCs, 24 were EGFR and KRAS mutation-negative (i.e., WT; triple negative); 11 were mutant EGFR (EGFR(+)), and 15 were mutant KRAS (KRAS(+)). We developed a diagnostic classifier that shows how miR-1253, miR-504, and miR-26a-5p expression levels can classify NSCLCs as ALK-translocated, mutant EGFR, or mutant KRAS versus mutation-free. We also generated a prognostic classifier based on miR-769-5p and Let-7d-5p expression levels that can predict overall survival. This classifier showed better performance than the commonly used classifiers based on mutational status. Although it has several limitations, this study shows that miRNA signatures and classifiers have great potential as powerful, cost-effective next-generation tools to improve and complement current genetic tests. Further studies of these miRNAs can help define their roles in NSCLC biology and in identifying best-performing chemotherapy regimens.

Lamperska KM, Kozlowski P, Kolenda T, et al.
Unpredictable changes of selected miRNA in expression profile of HNSCC.
Cancer Biomark. 2016; 16(1):55-64 [PubMed] Related Publications
BACKGROUND: The necessity of prediction and treatment outcome improvement of HNSCC needs to find new biomarkers. miRNAs seem to be good candidate for that.
OBJECTIVE: Analysis of selected 5 miRNAs (let-7d, miR-18a, miR-21, miR-205 and miR-375) as potential biomarkers that allows to distinguish tumor and healthy tissue taken from HNSCC patients.
METHODS: Tumor and normal epithelial tissues were obtained from 75 HNSCC patients to analyze selected miRNAs.
RESULTS: Analysis indicated significant increase of miR-21 and miR-205 in tumor when compared with healthy tissue (p= 0.0069 and p= 0.0029, respectively). There was a significant correlation between let-7d and miR-18a. let-7d was down-regulated in 34.67% cases, miR-18a in 29.33%, miR-21 in 20%, miR-205 in 30.67% and miR-375 in 52% cases. At the same time over-expression of let-7d was detected in 18.67% cases, miR-18a in 22.67%, miR-21 in 48%, miR-205 in 41.33% and miR-375 in 52% cases. There was no correlation between miRNA expression and clinical data and the course of illness.
CONCLUSION: Our study indicated that miR-21 and miR-205 can be used to analyze the clarity of surgical margins and that concomitant changes in the expression of let-7 and miR-18a in tumor tissues might represent important future markers indicating the biology of HNSCC. These observations will help with developing personalization for HNSCC patients' treatment.

Lee E, Ito K, Zhao Y, et al.
Inferred miRNA activity identifies miRNA-mediated regulatory networks underlying multiple cancers.
Bioinformatics. 2016; 32(1):96-105 [PubMed] Free Access to Full Article Related Publications
MOTIVATION: MicroRNAs (miRNAs) play a key role in regulating tumor progression and metastasis. Identifying key miRNAs, defined by their functional activities, can provide a deeper understanding of biology of miRNAs in cancer. However, miRNA expression level cannot accurately reflect miRNA activity.
RESULTS: We developed a computational approach, ActMiR, for identifying active miRNAs and miRNA-mediated regulatory mechanisms. Applying ActMiR to four cancer datasets in The Cancer Genome Atlas (TCGA), we showed that (i) miRNA activity was tumor subtype specific; (ii) genes correlated with inferred miRNA activities were more likely to enrich for miRNA binding motifs; (iii) expression levels of these genes and inferred miRNA activities were more likely to be negatively correlated. For the four cancer types in TCGA we identified 77-229 key miRNAs for each cancer subtype and annotated their biological functions. The miRNA-target pairs, predicted by our ActMiR algorithm but not by correlation of miRNA expression levels, were experimentally validated. The functional activities of key miRNAs were further demonstrated to be associated with clinical outcomes for other cancer types using independent datasets. For ER(-)/HER2(-) breast cancers, we identified activities of key miRNAs let-7d and miR-18a as potential prognostic markers and validated them in two independent ER(-)/HER2(-) breast cancer datasets. Our work provides a novel scheme to facilitate our understanding of miRNA. In summary, inferred activity of key miRNA provided a functional link to its mediated regulatory network, and can be used to robustly predict patient's survival.
AVAILABILITY AND IMPLEMENTATION: the software is freely available at http://research.mssm.edu/integrative-network-biology/Software.html.
CONTACT: jun.zhu@mssm.edu
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Rice J, Roberts H, Rai SN, Galandiuk S
Housekeeping genes for studies of plasma microRNA: A need for more precise standardization.
Surgery. 2015; 158(5):1345-51 [PubMed] Related Publications
INTRODUCTION: Plasma microRNAs (miRNAs) are promising biomarkers for many forms of cancer in humans; however, a fundamental concern is the lack of standardization in current data acquisition and reporting. Part of this problem lies in the use of numerous, different housekeeping genes (HKG) for the acquisition of real-time polymerase chain reaction data. This existing practice of using different HKGs generally is accepted, but reproducibility of data for comparison and validation between different laboratories calls for improvement. The need for data reproducibility standardization is crucial. An ideal plasma HKG (1) should be expressed in all samples, (2) have medium-to-high levels of expression, and (3) have consistently measurable levels of expression.
METHODS: Total RNA was extracted from 200-μL plasma samples via a modified miRNeasy (QIAGEN) extraction technique with yeast carrier. Total RNA purity was assessed with a Nanodrop 2000 spectrophotometer (Thermo Scientific). The cycle threshold (Ct) was fixed at 0.03 for all samples. We investigated 10 potential HKGs based both on reports in the literature and our previous data. The potential HKGs were Let-7a, Let-7d, Let-7g, miR-16, RNU6, RNU48, miR-191, miR-223, miR-484, and miR-520d-5p. Once all samples were run for each potential HKG, the mean Ct and SD was calculated for all sample groups, allowing for comparison among HKGs.
RESULTS: We screened 380 miRNAs by using microfluidic array technology (Applied Biosystems) in a discovery cohort of 20 colorectal cancer (CRC) patients, 10 patients each with breast cancer (BC), lung cancer (LC), pancreatic cancer (PC), 11 patients with colorectal adenoma, and 12 controls. The mean Ct and SD was calculated for RNU6, miR-520d-5p, miR-16, miR-191, miR-223, and miR-484, which were expressed in all samples. Let-7a, Let-7d, Let-7g, and RNU48 were only expressed in 26%, 7%, 10%, and 8% of samples, respectively, and therefore were deemed to be insufficiently reliable HKGs. Only miRNAs with >50% expression were included in this statistical analysis. U6 and miR-520d-5p had the most consistent Ct as well as the least SD. The use of both RNU6 and 520d-5p as HKGs provided reliable results.
CONCLUSION: Among HKGs that were expressed in all samples, we suggest that RNU6 and miR-520d-5p were the best candidates for HKGs for studies of plasma miRNA because of the consistent and high Ct in all samples and a very narrow, reproducible SD.

Honegger A, Schilling D, Bastian S, et al.
Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells.
PLoS Pathog. 2015; 11(3):e1004712 [PubMed] Free Access to Full Article Related Publications
Specific types of human papillomaviruses (HPVs) cause cervical cancer. Cervical cancers exhibit aberrant cellular microRNA (miRNA) expression patterns. By genome-wide analyses, we investigate whether the intracellular and exosomal miRNA compositions of HPV-positive cancer cells are dependent on endogenous E6/E7 oncogene expression. Deep sequencing studies combined with qRT-PCR analyses show that E6/E7 silencing significantly affects ten of the 52 most abundant intracellular miRNAs in HPV18-positive HeLa cells, downregulating miR-17-5p, miR-186-5p, miR-378a-3p, miR-378f, miR-629-5p and miR-7-5p, and upregulating miR-143-3p, miR-23a-3p, miR-23b-3p and miR-27b-3p. The effects of E6/E7 silencing on miRNA levels are mainly not dependent on p53 and similarly observed in HPV16-positive SiHa cells. The E6/E7-regulated miRNAs are enriched for species involved in the control of cell proliferation, senescence and apoptosis, suggesting that they contribute to the growth of HPV-positive cancer cells. Consistently, we show that sustained E6/E7 expression is required to maintain the intracellular levels of members of the miR-17~92 cluster, which reduce expression of the anti-proliferative p21 gene in HPV-positive cancer cells. In exosomes secreted by HeLa cells, a distinct seven-miRNA-signature was identified among the most abundant miRNAs, with significant downregulation of let-7d-5p, miR-20a-5p, miR-378a-3p, miR-423-3p, miR-7-5p, miR-92a-3p and upregulation of miR-21-5p, upon E6/E7 silencing. Several of the E6/E7-dependent exosomal miRNAs have also been linked to the control of cell proliferation and apoptosis. This study represents the first global analysis of intracellular and exosomal miRNAs and shows that viral oncogene expression affects the abundance of multiple miRNAs likely contributing to the E6/E7-dependent growth of HPV-positive cancer cells.

Wang L, Liu Y, Du L, et al.
Identification and validation of reference genes for the detection of serum microRNAs by reverse transcription-quantitative polymerase chain reaction in patients with bladder cancer.
Mol Med Rep. 2015; 12(1):615-22 [PubMed] Related Publications
Serum microRNAs (miRNAs) have been proposed as novel non-invasive biomarkers for the early detection of cancer. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the most commonly used method for investigating miRNA expression levels, however, the interpretation of RT-qPCR results depends largely on normalization to an appropriate endogenous control. The present study involved 129 patients with non-muscle-invasive bladder cancer (NMIBC), 121 patients with muscle-invasive bladder cancer (MIBC) and 158 healthy controls. The aim of the present study was to determine the most stable reference genes for the investigations of serum miRNA in bladder cancer (BC). MiSeq sequencing was performed and the expression levels of 10 miRNAs and U6 were then measured using RT-qPCR. Following RT‑qPCR, five genes (hsa-miR-193a-5p, hsa-miR-16-5p, U6, hsa-miR-191-5p and hsa-let-7d-3p) were selected for stability analysis using geNorm and NormFinder software. These algorithms identified hsa-miR-193a-5p and hsa-miR-16-5p as the most stably expressed reference genes. The availability of hsa-miR-193a-5p and hsa-miR-16-5p was confirmed in an additional cohort. One-way analysis of variance indicated that no significant differences were present in the expression levels among the three groups. Furthermore, miR-148b-3p was selected as a target miRNA to determine the effect of hsa-miR-193a-5p and hsa-miR-16-5p on miRNA quantification. The combined use of hsa-miR-193a-5p and hsa-miR-16-5p enabled the detection of a significant upregulation of miR-148b-3p in the BC serum. The results of the present study demonstrated that normalization of miRNA data, using a combination of hsa-miR-193a-5p and hsa-miR-16-5p as reference genes, may produce reliable and accurate results for the detection of serum miRNAs in BC.

Li Y, Jia Q, Zhang Q, Wan Y
Rab25 upregulation correlates with the proliferation, migration, and invasion of renal cell carcinoma.
Biochem Biophys Res Commun. 2015; 458(4):745-50 [PubMed] Related Publications
Renal cell carcinoma (RCC) is a common urological cancer with a poor prognosis. A recent cohort study revealed that the median survival of RCC patients was only 1.5 years and that <10% of the patients in the study survived up to 5 years. In tumor development, Rab GTPase are known to play potential roles such as regulation of cell proliferation, migration, invasion, communication, and drug resistance in multiple tumors. However, the correlation between Rabs expression and the occurrence, development, and metastasis of RCC remains unclear. In this study, we analyzed the transcriptional levels of 52 Rab GTPases in RCC patients. Our results showed that high levels of Rab25 expression were significantly correlated with RCC invasion classification (P < 0.01), lymph-node metastasis (P < 0.001), and pathological stage (P < 0.01). Conversely, in 786-O and A-498 cells, knocking down Rab25 protein expression inhibited cell proliferation, migration, and invasion. Our results also demonstrated that Rab25 is a target gene of let-7d, and further suggested that Rab25 upregulation in RCC is due to diminished expression of let-7d. These findings indicate that Rab25 might be a novel candidate molecule involved in RCC development, thus identifying a potential biological therapeutic target for RCC.

Jamali Z, Asl Aminabadi N, Attaran R, et al.
MicroRNAs as prognostic molecular signatures in human head and neck squamous cell carcinoma: a systematic review and meta-analysis.
Oral Oncol. 2015; 51(4):321-31 [PubMed] Related Publications
The aim of this study was to systematically review the articles investigating the prognostic value of different microRNAs (miRs) in human head and neck squamous cell carcinoma (HNSCC). Following the guidelines of the Meta-analysis of Observational Studies in Epidemiology group (MOOSE), we performed a broad and sensitive search on online databases to identify the studies that examined associations between different miRs expression and HNSCC prognosis. In this study, we considered clinical endpoints such as overall survival (OS) and disease specific survival (DFS) as acceptable outcomes. The prognostic value was demonstrated using hazard ratio (HR) with 95% confidence interval (CI). A total of 21 studies involving 1685 subjects analyzed the relationship between miRNA and prognosis of HNSCC. Our findings showed that significant elevated expressions of miR-21, miR-18a, miR-134a, miR-210, miR-181a, miR-19a, and miR-155 were associated with poor survival in human HNSCC. Conversely, decreased expressions of miR-153, miR-200c, miR-363, miR-203, miR-17, miR-205, miR-Let-7d, Let-7g, miR-34a, miR-126a, miR-375, miR-491-p5, miR 218, miR-451 and miR-125b were associated with poor prognosis. Alteration in miR-193b expression level does not show any significant association with cancer survival. We performed meta-analysis on the articles choosing miR-21 as prognostic marker. After excluding the study causing heterogeneity, a fixed model was applied, which showed an association between increased expression of miR-21 and poor survival (Pooled HR=1.57-95% CI: 1.22-2.02, P<0.05). Based on the results, it can be concluded that miRs specifically miR-21 may be promising markers for prognosis prediction in HNSCC.

Sutton PA, Jones RP, Morrison F, et al.
Evaluation of a novel tissue stabilization gel to facilitate clinical sampling for translational research in surgical trials.
Br J Surg. 2015; 102(2):e124-32 [PubMed] Related Publications
BACKGROUND: The aim was to establish the feasibility of using a tissue stabilization gel (Allprotect™) as an alternative to liquid nitrogen to facilitate collection of clinical samples for translational research.
METHODS: Tumour samples from patients undergoing surgery for primary or metastatic colorectal cancer were either snap-frozen in liquid nitrogen or stored in Allprotect™ under a number of different conditions. Sample integrity was compared across different storage conditions by assessing biomolecule stability and function. DNA quality was assessed spectrophotometrically and by KRas genotyping by pyrosequencing. Total RNA retrieval was determined by nanodrop indices/RNA integrity numbers, and quality assessed by reverse transcription-PCR for two representative genes (high-mobility group box 1, HMGB1; carboxylesterase 1, CES1) and two microRNAs (miR122 and let7d). Western blot analysis of HMGB1 and CES1 was used to confirm protein expression, and the metabolic conversion of irinotecan to its active metabolite, SN-38, was used to assess function.
RESULTS: Under short-term storage conditions (up to 1 week) there was no apparent difference in quality between samples stored in Allprotect™ and those snap-frozen in liquid nitrogen. Some RNA degradation became apparent in tissue archived in Allprotect™ after 1 week, and protein degradation after 2 weeks.
CONCLUSION: In hospitals that do not have access to liquid nitrogen and -80°C freezers, Allprotect™ provides a suitable alternative for the acquisition and stabilization of clinical samples. Storage proved satisfactory for up to 1 week, allowing transfer of samples without the need for specialized facilities. Surgical relevance Access to clinical material is a fundamental component of translational research that requires significant infrastructure (research personnel, liquid nitrogen, specialized storage facilities). The aim was to evaluate a new-to-market tissue stabilization gel (Allprotect™), which offers a simple solution to tissue preservation without the need for complex infrastructure. Allprotect™ offers comparable DNA, RNA and protein stabilization to tissue snap-frozen in liquid nitrogen for up to 1 week. Degradation of biomolecules beyond this highlights its role as a short-term tissue preservative. Allprotect™ has the potential to increase surgeon participation in translational research and surgical trials requiring tissue collection.

Zhang J, Xu X, Zhao S, et al.
The Expression and Significance of the Plasma Let-7 Family in Anti-N-methyl-D-aspartate Receptor Encephalitis.
J Mol Neurosci. 2015; 56(3):531-9 [PubMed] Related Publications
The study aimed to investigate the expression and significance of the plasma let-7 family in anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. Blood samples from 5 anti-NMDAR encephalitis patients and 5 negative controls were collected for microarray analysis. Blood samples from10 anti-NMDAR encephalitis patients, 10 anti-NMDAR encephalitis patients whose physical conditions have improved after 3 months of immunotherapy, 20 virus (meningitis) encephalitis patients, 20 tuberculosis (meningitis) encephalitis patients, 10 purulent (meningitis) encephalitis patients, 20 cerebral cysticercosis patients, 20 ischemic stroke patients, 20 intracerebral hemorrhage patients, 15 neuromyelitis optica patients, 15 multiple sclerosis patients, 15 moyamoya disease patients, and 20 negative controls were collected for real-time quantitative PCR (qRT-PCR) analysis. The expression levels of let-7a, let-7b, let-7d, and let-7f were significantly down-regulated in anti-NMDAR encephalitis compared with the negative controls (NC). The expression levels of let-7a, let-7d, and let-7f were significantly down-regulated in other nervous system diseases compared with the NC group while the expression level of let-7b was statistically insignificant in other nervous system diseases compared with the NC group. In addition, there was no significant dysregulation of let-7b in the anti-NMDAR encephalitis treatment group compared with the NC. Let-7b may be a potential diagnostic marker and an indicator that reflected the molecular mechanism of anti-NMDAR encephalitis.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MicroRNA let-7d, Cancer Genetics Web: http://www.cancer-genetics.org/MIRLET7D.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999