IGFBP1

Gene Summary

Gene:IGFBP1; insulin like growth factor binding protein 1
Aliases: AFBP, IBP1, PP12, IGF-BP25, hIGFBP-1
Location:7p12.3
Summary:This gene is a member of the insulin-like growth factor binding protein (IGFBP) family and encodes a protein with an IGFBP N-terminal domain and a thyroglobulin type-I domain. The encoded protein, mainly expressed in the liver, circulates in the plasma and binds both insulin-like growth factors (IGFs) I and II, prolonging their half-lives and altering their interaction with cell surface receptors. This protein is important in cell migration and metabolism. Low levels of this protein may be associated with impaired glucose tolerance, vascular disease and hypertension in human patients. [provided by RefSeq, Aug 2017]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:insulin-like growth factor-binding protein 1
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (10)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: IGFBP1 (cancer-related)

Sato Y, Inokuchi M, Takagi Y, Kojima K
IGFBP1 Is a Predictive Factor for Haematogenous Metastasis in Patients With Gastric Cancer.
Anticancer Res. 2019; 39(6):2829-2837 [PubMed] Related Publications
BACKGROUND/AIM: The clinicopathological significance and prognostic value of insulin-like growth factor binding protein 1 (IGFBP1) in gastric cancer have not been investigated to date. This study aimed to investigate the relationship of IGFBP1 expression with clinicopathological variables and prognosis.
MATERIALS AND METHODS: The correlation of IGFBP1 expression with the clinicopathological factors and the correlation of clinicopathogical factors with haematogenous metastasis in 219 gastric cancer patients who underwent surgery was examined.
RESULTS: High IGFBP1 expression was significantly associated with a poorer disease-specific survival (p<0.001) and relapse-free survival (p<0.001) in univariable analysis although IGFBP1 was not an independent prognostic factor. High IGFBP1 expression was the only independent risk factor of haematogenous metastasis.
CONCLUSION: High IGFBP1 expression was associated with haematogenous metastasis and poor survival. IGFBP1 might become a new prognostic factor and a target of molecular targeted therapy of gastric cancer.

Wang J, Luo XX, Tang YL, et al.
The prognostic values of insulin-like growth factor binding protein in breast cancer.
Medicine (Baltimore). 2019; 98(19):e15561 [PubMed] Free Access to Full Article Related Publications
Insulin-like growth factor binding proteins (IGFBPs) are a family of proteins binding to insulin-like growth factors, generally consisting 6 high-affinity IGFBPs, namely IGFBP1 through IGFBP6. IGFBP family members have been indicated to be involved in the development and progression of tumors and may be useful prognostic biomarkers in various malignancies. However, the prognostic role of individual IGFBPs, especially at the mRNA level in breast cancer patients remains elusive.We accessed the prognostic roles of IGFBPs family (IGFBP1-6) in breast cancer through the "Kaplan-Meier plotter" online database and OncoLnc database.Our results showed that the high expression of IGFBP1 mRNA was associated with favorable relapsed free survival (RFS) in all breast cancer patients. The high expression of IGFBP2 mRNA was associated with favorable overall survival (OS) and RFS in all breast cancer patients. The high expression of IGFBP3 mRNA was significantly correlated to worsen RFS in all breast cancer patients. The high expression of IGFBP4 mRNA was associated with favorable OS, RFS, distant metastasis-free survival, and post-progression survival in all breast cancer patients.Our results indicated that expression of IGFBPs mRNA may have prognostic values in breast cancer patients, and have a benefit for developing tools to predict the prognosis more accurately.

Lee E, Luo J, Schumacher FR, et al.
Growth factor genes and change in mammographic density after stopping combined hormone therapy in the California Teachers Study.
BMC Cancer. 2018; 18(1):1072 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The contribution of genetic polymorphisms to the large inter-individual variation in mammographic density (MD) changes following starting and stopping use of estrogen and progestin combined therapy (EPT) has not been well-studied. Previous studies have shown that circulating levels of insulin-like growth factors are associated with MD and cross-talk between estrogen signaling and growth factors is necessary for cell proliferation in the breast. We evaluated single nucleotide polymorphisms (SNPs) in growth factor genes in association with MD changes after women stop EPT use.
METHODS: We genotyped 191 SNPs in 13 growth factor pathway genes in 284 non-Hispanic white California Teachers Study participants who previously used EPT and collected their mammograms before and after quitting EPT. Percent MD was assessed using a computer-assisted method. Change in percent MD was calculated by subtracting percent MD of an 'off-EPT' mammogram from percent MD of an 'on-EPT' (i.e. baseline) mammogram. We used multivariable linear regression analysis to investigate the association between SNPs and change in percent MD. We calculated P-values corrected for multiple testing within a gene (P
RESULTS: Rs1983210 in INHA and rs35539615 in IGFBP1/3 showed the strongest associations. Per minor allele of rs1983210, the absolute change in percent MD after stopping EPT use decreased by 1.80% (a difference in absolute change in percent MD) (P
CONCLUSIONS: Genetic variation in growth factor pathway genes INHA and IGFBP1/3 may predict longitudinal MD change after women quit EPT. The observed differences in EPT-associated changes in percent MD in association with these genetic polymorphisms are modest but may be clinically significant considering that the magnitude of absolute increase in percent MD reported from large clinical trials of EPT ranged from 3% to 7%.

Zheng F, Tang Q, Zheng XH, et al.
Inactivation of Stat3 and crosstalk of miRNA155-5p and FOXO3a contribute to the induction of IGFBP1 expression by beta-elemene in human lung cancer.
Exp Mol Med. 2018; 50(9):121 [PubMed] Free Access to Full Article Related Publications
β-Elemene, an active component of natural plants, has been shown to exhibit anticancer properties. However, the detailed mechanism underlying these effects has yet to be determined. In this study, we show that β-elemene inhibits the growth of lung cancer cells. Mechanistically, we found that β-elemene decreased the phosphorylation of signal transducer and activator of transcription 3 (Stat3) and miRNA155-5p mRNA but induced the protein expression of human forkhead box class O (FOXO)3a; the latter two were abrogated in cells with overexpressed Stat3. Notably, miRNA155-5p mimics reduced FOXO3a luciferase reporter activity in the 3-UTR region and protein expression, whereas overexpressed FOXO3a countered the reduction of the miRNA155-5p levels by β-elemene. Moreover, β-elemene increased the mRNA and protein expression levels as well as promoter activity of insulin-like growth factor-binding protein 1 (IGFBP1); this finding was not observed in cells with a silenced FOXO3a gene and miRNA155-5p mimics. Finally, silencing of IGFBP1 blocked β-elemene-inhibited cell growth. Similar findings were observed in vivo. In summary, our results indicate that β-elemene increases IGFBP1 gene expression via inactivation of Stat3 followed by a reciprocal interaction between miRNA155-5p and FOXO3a. This effect leads to inhibition of human lung cancer cell growth. These findings reveal a novel molecular mechanism underlying the inhibitory effects of β-elemene on lung cancer cells.

Soini T, Eloranta K, Pihlajoki M, et al.
Transcription factor GATA4 associates with mesenchymal-like gene expression in human hepatoblastoma cells.
Tumour Biol. 2018; 40(7):1010428318785498 [PubMed] Related Publications
GATA4, a transcription factor crucial for early liver development, has been implicated in the pathophysiology of hepatoblastoma, an embryonal tumor of childhood. However, the molecular and phenotypic consequences of GATA4 expression in hepatoblastoma are not fully understood. We surveyed GATA4 expression in 24 hepatoblastomas using RNA in situ hybridization and immunohistochemistry. RNA interference was used to inhibit GATA4 in human HUH6 hepatoblastoma cells, and changes in cell migration were measured with wound healing and transwell assays. RNA microarray hybridization was performed on control and GATA4 knockdown HUH6 cells, and differentially expressed genes were validated by quantitative polymerase chain reaction or immunostaining. Plasmid transfection was used to overexpress GATA4 in primary human hepatocytes and ensuring changes in gene expression were measured by quantitative polymerase chain reaction. We found that GATA4 expression was high in most hepatoblastomas but weak or negligible in normal hepatocytes. GATA4 gene silencing impaired HUH6 cell migration. We identified 106 differentially expressed genes (72 downregulated, 34 upregulated) in knockdown versus control HUH6 cells. GATA4 silencing altered the expression of genes associated with cytoskeleton organization, cell-to-cell adhesion, and extracellular matrix dynamics (e.g. ADD3, AHNAK, DOCK8, RHOU, MSF, IGFBP1, COL4A2). These changes in gene expression reflected a more epithelial (less malignant) phenotype. Consistent with this notion, there was reduced F-actin stress fiber formation in knockdown HUH6 cells. Forced expression of GATA4 in primary human hepatocytes triggered opposite changes in the expression of genes identified by GATA4 silencing in HUH6 cells. In conclusion, GATA4 is highly expressed in most hepatoblastomas and correlates with a mesenchymal, migratory phenotype of hepatoblastoma cells.

Benkheil M, Paeshuyse J, Neyts J, et al.
HCV-induced EGFR-ERK signaling promotes a pro-inflammatory and pro-angiogenic signature contributing to liver cancer pathogenesis.
Biochem Pharmacol. 2018; 155:305-315 [PubMed] Related Publications
HCV is a major risk factor for hepatocellular carcinoma (HCC). HCC development in chronically infected HCV patients has until now been attributed to persistent inflammation and interference of viral proteins with host cell signaling. Since activation of the epidermal growth factor receptor (EGFR) presents a crucial step in HCV entry, we aimed at investigating whether EGFR signaling may contribute to the pathogenesis of HCV-related HCC. By applying microarray analysis, we generated a gene expression signature for secreted proteins in HCV-infected hepatoma cells. This gene signature was enriched for inflammatory and angiogenic processes; both crucially involved in HCC development. RT-qPCR analysis, conducted on the entire list of upregulated genes, confirmed induction of 11 genes (AREG, IL8, CCL20, CSF1, GDF15, IGFBP1, VNN3, THBS1 and PAI-1) in a virus titer- and replication-dependent manner. EGFR activation in hepatoma cells largely mimicked the gene signature seen in the infectious HCV model. Further, the EGFR-ERK pathway, but not Akt signaling, was responsible for this gene expression profile. Finally, microarray analysis conducted on clinical data from the GEO database, revealed that our validated gene expression profile is significantly represented in livers of patients with HCV-related liver pathogenesis (cirrhosis and HCC) compared to healthy livers. Taken together, our data indicate that persistent activation of EGFR-ERK signaling in chronically infected HCV patients may induce a specific pro-inflammatory and pro-angiogenic signature that presents a new mechanism by which HCV can promote liver cancer pathogenesis. A better understanding of the key factors in HCV-related oncogenesis, may efficiently direct HCC drug development.

Dechassa ML, Tryndyak V, de Conti A, et al.
Identification of chromatin-accessible domains in non-alcoholic steatohepatitis-derived hepatocellular carcinoma.
Mol Carcinog. 2018; 57(8):978-987 [PubMed] Related Publications
Non-alcoholic steatohepatitis (NASH) is becoming one of the major causes of hepatocellular carcinoma (HCC) in the United States and Western countries; however, the molecular mechanisms associated with NASH-related liver carcinogenesis are not well understood. In the present study, we investigated cancer-associated chromatin alterations using a model that resembles the development of NASH-related HCC in humans. An assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) identified 1677 tumor-specific chromatin-accessible regions in NASH-derived HCC tissue samples. Using a combined analysis of ATAC-seq and global gene expression data, we identified 199 differentially expressed genes, 139 up-regulated and 60 down-regulated. Interestingly, 15 of the 139 up-regulated genes had accessible chromatin sites within 5 Kb of the transcription start site (TSS), including Apoa4, Anxa2, Serpine1, Igfbp1, and Tubb2a, genes critically involved in the development of NASH and HCC. We demonstrate that the mechanism for the up-regulation of these genes is associated with the enrichment of chromatin-accessible regions by transcription factors, especially NFATC2, and histone H3K4me1 and H3K27ac gene transcription-activating marks. These data underline the important role of chromatin accessibility perturbations in reshaping of the chromatin landscape in NASH-related HCC.

Tang Q, Zheng F, Wu J, et al.
Combination of Solamargine and Metformin Strengthens IGFBP1 Gene Expression Through Inactivation of Stat3 and Reciprocal Interaction Between FOXO3a and SP1.
Cell Physiol Biochem. 2017; 43(6):2310-2326 [PubMed] Related Publications
BACKGROUND/AIMS: Solamargine, one natural photochemical component from traditional plants, has been shown to have anti-cancers properties. We previously showed that solamargine inhibited the growth of non-small-cell lung cancer (NSCLC) cells through suppression of prostaglandin E2 (PGE2) receptor EP4 gene and regulation of downstream signaling pathways. However, the detailed mechanism underlying this, especially in combination of metformin, a known AMPK activator, still remained to be determined.
METHODS: Cell viability was measured using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and colorimetric 5-bromo-2-deoxyuridine (BrdU) ELISA methods, respectively. Western blot analysis and immunohistochemistry were performed to examine the phosphorylation and protein expressions of signal transducer and activator of transcription 3 (Stat3), SP1, forkhead box O3a (FOXO3a), and insulin-like growth factor (IGF)-IGF binding protein 1 (IGFBP1). The expression of IGFBP1 mRNA was measured by quantitative real time PCR (qRT-PCR). Silencing of FOXO3a and IGFBP1 were examined by siRNA procedures. Exogenously expression of SP1, FOXO3a, and IGFBP1 were carried out by transient transfection assays. The promoter activity of IGFBP1 was tested using Secrete-PairTM Dual Luminescence Assay Kit. A xenografted tumor model was used to further test the effect of solamargine in combining with metformin in vivo.
RESULTS: We further demonstrated that solamargine inhibited growth and induced cell cycle arrest in other NSCLC cell lines. Through mechanism-based approaches, we showed that solamargine decreased the phosphorylation of Stat3; In addition, solamargine induced FOXO3a, whereas reduced SP1 protein levels; all of which were abrogated in cells with overexpressed Stat3 gene. Interestingly, there is interaction between FOXO3a and SP1. Moreover, solamargine increased mRNA, protein expression and promoter activity of IGFBP1, which was not observed in cells with overexpressed SP1 or with silenced FOXO3a genes. Finally, ablation of IGFBP1 expression by siRNA blocked the effect of solamargine on cell growth inhibition. More importantly, there was a synergy of combination of solamargine and metformin. Similar findings were also observed in vivo.
CONCLUSION: Our results show that solamargine increases IGFBP1 gene expression through inactivation of Stat3, followed by regulation and reciprocal interaction of FOXO3a and SP1 in vitro and in vivo. This ultimately leads to suppression of human lung cancer cell growth. Moreover, this is a synergy of solamargine in combination with metformin in this process. This study unravels a novel mechanism underlying the anti-lung cancer effects of solamargine in combination of metformin, and suggests a potential new lung cancer associated therapy.

Neuzillet Y, Chapeaublanc E, Krucker C, et al.
IGF1R activation and the in vitro antiproliferative efficacy of IGF1R inhibitor are inversely correlated with IGFBP5 expression in bladder cancer.
BMC Cancer. 2017; 17(1):636 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The insulin growth factor (IGF) pathway has been proposed as a potential therapeutic target in bladder cancer. We characterized the expression of components of the IGF pathway - insulin growth factor receptors (INSR, IGF1R, IGF2R), ligands (INS, IGF1, IGF2), and binding proteins (IGFBP1-7, IGF2BP1-3) - in bladder cancer and its correlation with IGF1R activation, and the anti-proliferative efficacy of an IGF1R kinase inhibitor in this setting.
METHODS: We analyzed transcriptomic data from two independent bladder cancer datasets, corresponding to 200 tumoral and five normal urothelium samples. We evaluated the activation status of the IGF pathway in bladder tumors, by assessing IGF1R phosphorylation and evaluating its correlation with mRNA levels for IGF pathway components. We finally evaluated the correlation between inhibition of proliferation by a selective inhibitor of the IGF1R kinase (AEW541), reported in 13 bladder cancer derived cell lines by the Cancer Cell Line Encyclopedia Consortium and mRNA levels for IGF pathway components.
RESULTS: IGF1R expression and activation were stronger in non-muscle-invasive than in muscle-invasive bladder tumors. There was a significant inverse correlation between IGF1R phosphorylation and IGFBP5 expression in tumors. Consistent with this finding, the inhibition of bladder cell line viability by IGF1R inhibitor was also inversely correlated with IGFBP5 expression.
CONCLUSION: The IGF pathway is activated and therefore a potential therapeutic target for non muscle-invasive bladder tumors and IGFBP5 could be used as a surrogate marker for predicting tumor sensitivity to anti-IGF therapy.

Tang Q, Wu J, Zheng F, et al.
Emodin Increases Expression of Insulin-Like Growth Factor Binding Protein 1 through Activation of MEK/ERK/AMPKα and Interaction of PPARγ and Sp1 in Lung Cancer.
Cell Physiol Biochem. 2017; 41(1):339-357 [PubMed] Related Publications
BACKGROUND: Emodin has anti-neoplastic activities on multiple tumors. However, the molecular mechanisms underlying this effect still remain to be fully understood.
METHODS: Cell viability and cell cycle distribution were measured using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays and flow cytometry, respectively. Cell invasion and migration were examined by transwell invasion and wound healing assays. Western blot analysis was performed to examine the phosphorylation and protein expression of AMP-activated protein kinase alpha (AMPKα), extracellular signaling-regulated kinase 1/2 (ERK1/2), peroxisome proliferators-activated receptor gamma (PPARγ), insulin-like growth factor (IGF) binding protein 1 (IGFBP1) and the transcription factor Sp1. QRT-PCR was used to examine the mRNA levels of the IGFBP1 gene. Small interfering RNAs (siRNAs) were used to knockdown PPARγ and IGFBP1 genes. Exogenously expression of IGFBP1 and Sp1 was determined by transient transfection assays. IGFBP1 promoter activity was measured by Secrete-Pair Dual Luminescence Assay Kit. In vivo nude mice xenograft model and bioluminescent imaging system were used to confirm the findings.
RESULTS: We showed that emodin induced cell cycle arrest of NSCLC cells. Emodin increased PPARγ protein and luciferase reporter activity, which were abolished by inhibitors of MAPK extracellular signaling-regulated kinase (ERK) kinase (MEK)/ERK and AMPK. Silencing of PPARγ abrogated emodin-inhibited cell growth and cell cycle arrest. Furthermore, emodin elevated IGFBP1 mRNA, protein, and promoter activity through activation of PPARγ. Intriguingly, overexpressed Sp1 attenuated emodin-induced IGFBP1 expression, which was not observed in cells with silenced PPARγ gene. Moreover, silencing of IGFBP1 gene blunted emodin-induced inhibition of cell growth and cell cycle arrest. On the contrary, overexpressed IGFBP1 enhanced emodin-induced phosphorylation of AMPKα and ERK1/2, and restored emodin-inhibited growth in cells with silenced endogenous IGFBP1 gene. Emodin also inhibited growth of lung xenograft tumors and Sp1, and increased IGFBP1 and PPARγ protein expressions In vivo.
CONCLUSION: Collectively, our results show that emodin inhibits growth of non-small-cell lung cancer (NSCLC) cells through ERK and AMPKα-mediated induction of PPARγ, followed by reduction of Sp1. This in turn induces IGFBP1 gene expression. Thus, the signaling cascades, positive feedback loop and cooperative interplay between transcription factors-induced the expression of IGFBP1 gene contribute to the overall responses of emodin. This study provides a novel mechanism by which emodin inhibits growth of human lung cancer cells.

Whitaker LH, Murray AA, Matthews R, et al.
Selective progesterone receptor modulator (SPRM) ulipristal acetate (UPA) and its effects on the human endometrium.
Hum Reprod. 2017; 32(3):531-543 [PubMed] Free Access to Full Article Related Publications
STUDY QUESTION: What is the impact of administration of the selective progesterone receptor modulator (SPRM), ulipristal acetate (UPA) on the endometrium of women with fibroids?
SUMMARY ANSWER: UPA administration altered expression of sex-steroid receptors and progesterone-regulated genes and was associated with low levels of glandular and stromal cell proliferation.
WHAT IS KNOWN ALREADY: Administration of all SPRM class members results in PAEC (progesterone receptor modulator associated endometrial changes). Data on the impact of the SPRM UPA administration on endometrial sex-steroid receptor expression, progesterone (P)-regulated genes and cell proliferation are currently lacking.
STUDY DESIGN SIZE, DURATION: Observational study with histological and molecular analyses to delineate impact of treatment with UPA on endometrium. Endometrial samples (n = 9) were collected at hysterectomy from women aged 39 to 49 with uterine fibroids treated with UPA (oral 5 mg daily) for 9-12 weeks. Control proliferative (n = 9) and secretory (n = 9) endometrium from women aged 38-52 with fibroids were derived from institutional tissue archives.
PARTICIPANTS/MATERIALS, SETTING, METHODS: Study setting was a University Research Institute. Endometrial biopsies were collected with institutional ethical approval and written informed consent. Concentrations of mRNAs encoded by steroid receptors, P-regulated genes and factors in decidualised endometrium were quantified with qRT-PCR. Immunohistochemistry was employed for localization of progesterone (PR, PRB), androgen (AR), estrogen (ERα) receptors and expression of FOXO1, HAND2, HOXA10, PTEN homologue. Endometrial glandular and stromal cell proliferation was objectively quantified using Ki67.
MAIN RESULTS AND THE ROLE OF CHANCE: UPA induced morphological changes in endometrial tissue consistent with PAEC. A striking change in expression patterns of PR and AR was detected compared with either proliferative or secretory phase samples. There were significant changes in pattern of expression of mRNAs encoded by IGFBP-1, FOXO1, IL-15, HAND2, IHH and HOXA10 compared with secretory phase samples consistent with low agonist activity in endometrium. Expression of mRNA encoded by FOXM1, a transcription factor implicated in cell cycle progression, was low in UPA-treated samples. Cell proliferation (Ki67 positive nuclei) was lower in samples from women treated with UPA compared with those in the proliferative phase.
LARGE SCALE DATA: N/A.
LIMITATIONS REASONS FOR CAUTION: A small number of well-characterized patients were studied in-depth. The impacts on morphology, molecular and cellular changes with SPRM, UPA administration on symptom control remains to be determined.
WIDER IMPLICATIONS OF THE FINDINGS: P plays a pivotal role in endometrial function. P-action is mediated through interaction with the PR. These data provide support for onward development of the SPRM class of compounds as effective long-term medical therapy for heavy menstrual bleeding.
STUDY FUNDING/COMPETING INTEREST(S): H.O.D.C. received has clinical research support for laboratory consumables and staff from Bayer Pharma Ag and provides consultancy advice (no personal remuneration) for Bayer Pharma Ag, PregLem SA, Gedeon Richter, Vifor Pharma UK Ltd, AbbVie Inc.; A.R.W.W. has received consultancy payments from Bayer, Gedeon Richter, Preglem SA, HRA Pharma; L.H.R.W., A.A.M., R.M., G.S. and P.T.K.S. have no conflicts of interest. Study funded in part from each of: Medical Research Council (G1002033; G1100356/1; MR/N022556/1); National Health Institute for Health Research (12/206/520) and TENOVUS Scotland.

Vaziri-Gohar A, Zheng Y, Houston KD
IGF-1 Receptor Modulates FoxO1-Mediated Tamoxifen Response in Breast Cancer Cells.
Mol Cancer Res. 2017; 15(4):489-497 [PubMed] Free Access to Full Article Related Publications
Tamoxifen is a common adjuvant treatment for estrogen receptor (ER)α-positive patients with breast cancer; however, acquired resistance abrogates the efficacy of this therapeutic approach. We recently demonstrated that G protein-coupled estrogen receptor 1 (GPER1) mediates tamoxifen action in breast cancer cells by inducing insulin-like growth factor-binding protein-1 (IGFBP-1) to inhibit IGF-1-dependent signaling. To determine whether dysregulation of IGFBP-1 induction is associated with tamoxifen resistance, IGFBP-1 transcription was measured in tamoxifen-resistant MCF-7 cells (TamR) after tamoxifen (Tam) treatment. IGFBP-1 transcription was not stimulated in tamoxifen-treated TamR cells whereas decreased expression of FoxO1, a known modulator of IGFBP-1, was observed. Exogenous expression of FoxO1 rescued the ability of tamoxifen to induce IGFBP-1 transcription in TamR cells. As decreased IGF-1R expression is observed in tamoxifen-resistant cells, the requirement for IGF-1R expression on tamoxifen-stimulated IGFBP-1 transcription was investigated. In TamR and SK-BR-3 cells, both characterized by low IGF-1R levels, exogenous IGF-1R expression increased FoxO1 levels and IGFBP-1 expression, whereas IGF-1R knockdown in MCF-7 cells decreased tamoxifen-stimulated IGFBP-1 transcription. Interestingly, both 17β-estradiol (E2)-stimulated ERα phosphorylation and progesterone receptor (PR) expression were altered in TamR. PR is a transcription factor known to modulate FoxO1 transcription. In addition, IGF-1R knockdown decreased FoxO1 protein levels in MCF-7 cells. Furthermore, IGF-1R or FoxO1 knockdown inhibited the ability of tamoxifen to induce IGFBP-1 transcription and tamoxifen sensitivity in MCF-7 cells. These data provide a molecular mechanistic connection between IGF-1R expression and the FoxO1-mediated mechanism of tamoxifen action in breast cancer cells.

Dzik C, Reis ST, Viana NI, et al.
Gene expression profile of renal cell carcinomas after neoadjuvant treatment with sunitinib: new pathways revealed.
Int J Biol Markers. 2017; 32(2):e210-e217 [PubMed] Related Publications
BACKGROUND: In renal cell carcinoma (RCC) of the clear cell type, inactivity of the VHL gene induces overexpression of HIF1 α and its targets, the tyrosine kinase receptors, promoting RCC development and progression. The discovery of tyrosine kinase inhibitors (TKIs) changed the treatment of these tumors. Other molecular pathways involved in the TKI mechanisms of action have not been described in the literature. The aim of our study was to elucidate alternative mechanisms of action of sunitinib in tumor tissue after neoadjuvant treatment of RCC.
METHODS: The gene expression profile was accessed using microarray (Affymetrix Human Genome U133 Plus 2.0 platform) and frozen RCC tissues collected from 5 patients with locally advanced non-metastatic tumors who underwent nephrectomy after being treated with 2 cycles of neoadjuvant sunitinib. The results were compared with matched controls comprising 6 patients with no neoadjuvant intervention.
RESULTS: There was underexpression of the majority of genes after sunitinib treatment. The lower expression levels of IGFBP1, CCL20, CXCL6 and FGB were confirmed by qRT-PCR in all cases. The downregulation of gene expression leads us to search for methylation as a mechanism of action of the TKI. IGFBP1 was shown to be methylated by methylation-sensitive high-resolution melting technique.
CONCLUSIONS: The ultimate genetic effects of sunitinib may explain its actions as an antitumor drug that apparently suppresses the expression of important genes related to cell survival, adhesion, invasion and immunomodulation. The methylation of gene promoters was shown to be part of the mechanism of action of this class of drugs.

Bonilla C, Lewis SJ, Rowlands MA, et al.
Assessing the role of insulin-like growth factors and binding proteins in prostate cancer using Mendelian randomization: Genetic variants as instruments for circulating levels.
Int J Cancer. 2016; 139(7):1520-33 [PubMed] Free Access to Full Article Related Publications
Circulating insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) are associated with prostate cancer. Using genetic variants as instruments for IGF peptides, we investigated whether these associations are likely to be causal. We identified from the literature 56 single nucleotide polymorphisms (SNPs) in the IGF axis previously associated with biomarker levels (8 from a genome-wide association study [GWAS] and 48 in reported candidate genes). In ∼700 men without prostate cancer and two replication cohorts (N ∼ 900 and ∼9,000), we examined the properties of these SNPS as instrumental variables (IVs) for IGF-I, IGF-II, IGFBP-2 and IGFBP-3. Those confirmed as strong IVs were tested for association with prostate cancer risk, low (< 7) vs. high (≥ 7) Gleason grade, localised vs. advanced stage, and mortality, in 22,936 controls and 22,992 cases. IV analysis was used in an attempt to estimate the causal effect of circulating IGF peptides on prostate cancer. Published SNPs in the IGFBP1/IGFBP3 gene region, particularly rs11977526, were strong instruments for IGF-II and IGFBP-3, less so for IGF-I. Rs11977526 was associated with high (vs. low) Gleason grade (OR per IGF-II/IGFBP-3 level-raising allele 1.05; 95% CI: 1.00, 1.10). Using rs11977526 as an IV we estimated the causal effect of a one SD increase in IGF-II (∼265 ng/mL) on risk of high vs. low grade disease as 1.14 (95% CI: 1.00, 1.31). Because of the potential for pleiotropy of the genetic instruments, these findings can only causally implicate the IGF pathway in general, not any one specific biomarker.

Kim JC, Ha YJ, Tak KH, et al.
Complex Behavior of ALDH1A1 and IGFBP1 in Liver Metastasis from a Colorectal Cancer.
PLoS One. 2016; 11(5):e0155160 [PubMed] Free Access to Full Article Related Publications
Using our data set (GSE50760) previously established by RNA sequencing, the present study aimed to identify upregulated genes associated with colorectal cancer (CRC) liver metastasis (CLM) and verify their biological behavior. The potential roles of candidate genes in tumors were assessed using cell proliferation and invasion assays. Tissue samples were collected from 18 CRC patients with synchronous CLM and two CRC cell lines (SW480 and SW620) were used for transfection and cloning. The roles of the genes identified in CLM were verified using immunohistochemistry in 48 nude mice after intrasplenic transplantation of CRC cells. mRNA and protein expression was determined by quantitative real-time reverse transcription polymerase chain reaction and western blot, respectively. Nine genes were initially selected according to the relevance of their molecular function and biological process and, finally, ALDH1A1 and IGFBP1 were chosen based on differential mRNA expression and a positive correlation with protein expression. The overexpression of ALDH1A1 and IGFBP1 significantly and time-dependently decreased cell proliferation (p ≤ 0.001-0.003) and suppressed invasiveness by ≥3-fold over control cells (p < 0.001) in the SW480 cell line, whereas they had a slight effect on reducing SW620 cell proliferation. The protein expression levels of E-cadherin, N-cadherin, claudin-1, and vimentin were significantly higher in CLM than in primary tumor tissues (p < 0.05). However, the cadherin switch, namely, N-cadherin overexpression with reduced E-cadherin expression, was not observed in CLM tissues and transfected CRC cells. Irrespective of reduced proliferation and invasion found on in vitro cell assays, persistent overexpression of β-catenin, vimentin, and ZO-1 in IGFBP1-overexpressing SW480 cells possibly contributed to CLM development in mice implanted with IGFBP1-overexpressing SW480 cells (CLM occurrences: SW480/IGFBP1-transfected mice vs. SW480/vector- and SW480/ALDH1A1-transfected mice, 4/8 vs. 0/10, p = 0.023). In conclusion, ALDH1A1 and IGFBP1 are differentially overexpressed in CLM and may play a dual role, functioning as both tumor suppressors and metastasis promoters in CRC.

Merritt MA, Strickler HD, Einstein MH, et al.
Insulin/IGF and sex hormone axes in human endometrium and associations with endometrial cancer risk factors.
Cancer Causes Control. 2016; 27(6):737-48 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Experimental and observational data link insulin, insulin-like growth factor (IGF), and estrogens to endometrial tumorigenesis. However, there are limited data regarding insulin/IGF and sex hormone axes protein and gene expression in normal endometrial tissues, and very few studies have examined the impact of endometrial cancer risk factors on endometrial tissue biology.
METHODS: We evaluated endometrial tissues from 77 premenopausal and 30 postmenopausal women who underwent hysterectomy for benign indications and had provided epidemiological data. Endometrial tissue mRNA and protein levels were measured using quantitative real-time PCR and immunohistochemistry, respectively.
RESULTS: In postmenopausal women, we observed higher levels of phosphorylated IGF-I/insulin receptor (pIGF1R/pIR) in diabetic versus non-diabetic women (p value =0.02), while women who reported regular nonsteroidal anti-inflammatory drug use versus no use had higher levels of insulin and progesterone receptors (both p values ≤0.03). We also noted differences in pIGF1R/pIR staining with OC use (postmenopausal women only), and the proportion of estrogen receptor-positive tissues varied by the number of live births and PTEN status (premenopausal only) (p values ≤0.04). Compared to premenopausal proliferative phase women, postmenopausal women exhibited lower mRNA levels of IGF1, but higher IGFBP1 and IGFBP3 expression (all p values ≤0.004), and higher protein levels of the receptors for estrogen, insulin, and IGF-I (all p values ≤0.02). Conversely, pIGF1R/pIR levels were higher in premenopausal proliferative phase versus postmenopausal endometrium (p value =0.01).
CONCLUSIONS: These results highlight links between endometrial cancer risk factors and mechanistic factors that may contribute to early events in the multistage process of endometrial carcinogenesis.

Kwasniewski W, Gozdzicka-Jozefiak A, Wolun-Cholewa M, et al.
Microsatellite polymorphism in the P1 promoter region of the IGF‑1 gene is associated with endometrial cancer.
Mol Med Rep. 2016; 13(6):4950-8 [PubMed] Free Access to Full Article Related Publications
Endometrial carcinoma (EC) is the most common type of gynecological malignancy. Studies have demonstrated that the insulin growth factor (IGF) pathway is implicated in the development of endometrial tumors and that the serum levels of IGF‑1 are affected by estrogen. Most EC cells with high microsatellite instability (MSI‑H) accumulate mutations at a microsatellite sequence in the IGF‑1 gene. The present study investigated the CA repeat polymorphism in the P1 promoter region of the IGF‑1 gene among Caucasian females with endometrial hyperplasia, EC and healthy control subjects, whose blood serum and surgical tissue specimens were analyzed. Differences or correlations between the analyzed parameters [serum levels of IGF-1 and IGF binding protein (IGFBP)‑1 and IGFBP‑3 as well as estrogens among the polymorphisms] were verified using the χ2, Mann-Whitney U, Kruskal-Wallis or Spearman's rank correlation tests. A PCR amplification and DNA sequencing analysis was used for identification of (CA)n repeats in the P1 region of IGF‑1. ELISA was used to determine the blood serum levels of IGF‑1, IGFBP‑1, IGFBP‑3 and estrogens. Furthermore, IGF-1 was assessed in endometrial tissues by immunohistochemical analysis. The present study indicated no statistically significant differences between serum levels of IGF‑1, IGFBP‑1, IGFBP‑3 and estrone, estriol and estradiol in the control and study groups. A significant correlation was identified between the IGF-1 levels and estrone levels in the MSI-H polymorphism (r=-0.41, P=0.012) as well as a highly negative correlation between IGF-1 levels and the estradiol levels in the MSI-H polymorphism (r=-0.6, P=0.002). Genotypes without the 19 CA allele were predominantly found in EC. Furthermore, statistical analysis indicated that the number of IGF-1-expressing cells was significantly elevated in MSI-H type 18-20 (P=0.0072), MSI-L type 19-20 (P=0.025) and microsatellite-stable MSS type 19-19 (P=0.024) compared with those in the MSI-H 20-20 genotype. The present study suggested that it is rather likely that the polymorphisms in the IGF-1 promoter are associated with EC in Caucasian females with regard to its development. In the present study, polymorphisms of the IGF-1 promoter may have been introduced during the genesis of EC and contributed to it by leading to aberrant expression of IGF-1.

Bieghs L, Brohus M, Kristensen IB, et al.
Abnormal IGF-Binding Protein Profile in the Bone Marrow of Multiple Myeloma Patients.
PLoS One. 2016; 11(4):e0154256 [PubMed] Free Access to Full Article Related Publications
Insulin-like growth factor (IGF) signalling plays a key role in homing, progression, and treatment resistance in multiple myeloma (MM). In the extracellular environment, the majority of IGF molecules are bound to one of six IGF-binding proteins (IGFBP1-6), leaving a minor fraction of total IGF free and accessible for receptor activation. In MM, high IGF-receptor type 1 expression levels correlate with a poor prognosis, but the status and role of IGF and IGFBPs in the pathobiology of MM is unknown. Here we measured total IGF1, IGF2, and intact IGFBP levels in blood and bone marrow samples from MM (n = 17), monoclonal gammopathy of undetermined significance (MGUS) (n = 37), and control individuals (n = 15), using ELISA (IGFs) and 125I-IGF1 Western Ligand Blotting (IGFBPs). MGUS and MM patients displayed a significant increase in intact IGFBP-2 (2.5-3.8 fold) and decrease in intact IGFBP-3 (0.6-0.5 fold) in the circulation compared to control individuals. Further, IGFBP-2 as well as total IGFBP levels were significantly lower in bone marrow compared to circulation in MM and MGUS only, whereas IGF1, IGF2, and IGFBP-3 were equally distributed between the two compartments. In conclusion, the profound change in IGFBP profile strongly suggests an increased IGF bioavailability in the bone marrow microenvironment in MGUS and MM, despite no change in growth factor concentration.

Yang LJ, Tang Q, Wu J, et al.
Inter-regulation of IGFBP1 and FOXO3a unveils novel mechanism in ursolic acid-inhibited growth of hepatocellular carcinoma cells.
J Exp Clin Cancer Res. 2016; 35:59 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Ursolic acid (UA), a natural pentacyclic triterpenoid, exerts anti-tumor effects in various cancer types including hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying this remain largely unknown.
METHODS: Cell viability and cell cycle were examined by MTT and Flow cytometry assays. Western blot analysis was performed to measure the phosphorylation and protein expression of p38 MAPK, insulin-like growth factor (IGF) binding protein 1 (IGFBP1) and forkhead box O3A (FOXO3a). Quantitative real-time PCR (qRT-PCR) was used to examine the mRNA levels of IGFBP1 gene. Small interfering RNAs (siRNAs) method was used to knockdown IGFBP1 gene. Exogenous expressions of IGFBP1 and FOXO3a were carried out by transient transfection assays. IGFBP1 promoter activity was measured by Secrete-Pair™ Dual Luminescence Assay Kit . In vivo nude mice xenograft model and bioluminescent imaging system were used to confirm the findings in vitro.
RESULTS: We showed that UA stimulated phosphorylation of p38 MAPK. In addition, UA increased the protein, mRNA levels, and promoter activity of IGFBP1, which was abrogated by the specific inhibitor of p38 MAPK (SB203580). Intriguingly, we showed that UA increased the expression of FOXO3a and that overexpressed FOXO3a enhanced phosphorylation of p38 MAPK, all of which were not observed in cells silencing of endogenous IGFBP1 gene. Moreover, exogenous expressed IGFBP1 strengthened UA-induced phosphorylation of p38 MAPK and FOXO3a protein expression, and more importantly, restored the effect of UA-inhibited growth in cells silencing of endogenous IGFBP1 gene. Consistent with these, UA suppressed tumor growth and increased phosphorylation of p38 MAPK, protein expressions of IGFBP1 and FOXO3a in vivo.
CONCLUSION: Collectively, our results show that UA inhibits growth of HCC cells through p38 MAPK-mediated induction of IGFBP1 and FOXO3a expression. The interactions between IGFBP1 and FOXO3a, and feedback regulatory loop of p38 MAPK by IGFBP1 and FOXO3a resulting in reciprocal pathways, contribute to the overall effects of UA. This in vitro and in vivo study corroborates a potential novel mechanism by which UA controls HCC growth and implies that the rational targeting IGFBP1 and FOXO3a can be potential for the therapeutic strategy against HCC.

Shafiee MN, Seedhouse C, Mongan N, et al.
Up-regulation of genes involved in the insulin signalling pathway (IGF1, PTEN and IGFBP1) in the endometrium may link polycystic ovarian syndrome and endometrial cancer.
Mol Cell Endocrinol. 2016; 424:94-101 [PubMed] Related Publications
BACKGROUND: Endometrial cancer (EC) is the most common gynaecological cancer amongst women in the UK. Although previous studies have found that women with polycystic ovary syndrome (PCOS) have at least a three-fold increase in endometrial cancer (EC) risk compared to women without PCOS, the precise molecular mechanisms which link between PCOS and EC remain unclear. It has been suggested that insulin resistance may contribute to the increased risk of EC in PCOS. The specific expression of genes related to the insulin-signalling pathway including the IGF system in the endometrium of women with PCOS has however never been measured and compared to that in women with EC without PCOS and control women without EC or PCOS. .
OBJECTIVES: To test the hypothesis that insulin signalling plays a key role in the development of EC in women with PCOS by measuring and comparing the expression of three key genes involved in the insulin signalling pathway (IGF1, PTEN and IGFBP1) in endometrial tissue obtained from three groups of women; PCOS without EC, women with EC without PCOS and non-PCOS women without EC (controls). We also aimed to determine the correlation between the gene expressions to various clinical variables among participants.
METHODS: This was a cross-sectional study of 102 women in 3 groups (PCOS, EC and controls) at a University teaching hospital in the United Kingdom. Clinical assessment (blood pressure, body mass index (BMI) and waist-hip-circumference ratio), venepuntures (fasting blood sugar, insulin, lipid profile, hormones) and endometrial tissue biopsies were taken in all participants. Endometrial tissue RNA extraction was performed before real time polymerase-chain-reaction for the genes of interest (IGF1, IGFBP1 and PTEN) was carried out. To compare the baseline characteristics of the study population, One-Way-ANOVA test or the Independent t-test was used. For variables that were not normally distributed, the Spearman correlation test was used to calculate the r value. A "p" value of <0.05 was considered statistically significant.
RESULTS: IGF1, IGFBP1 and PTEN gene expression were significantly up-regulated in the endometrium of PCOS and EC women compared to controls. However there was no significant difference in the expression of these genes in PCOS compared to EC endometrium. The BMI of women with PCOS and controls, were not significantly different (29.28 (± 2.91) vs 28.58 (± 2.62) kg/m(2)) respectively, women with EC however had a higher mean BMI (32.22 (± 5.70) kg/m(2)). PCOS women were younger (31.8 (± 5.97) years) than women with EC (63.44 (± 10.07) years) and controls (43.68 (± 13.12) years). The changes in gene expression were independent of BMI, waist hip ratio, estradiol and androgen levels. Protein validation test in the serum samples in the three groups were consistent with the gene findings.
CONCLUSION: Women with PCOS and EC have an increased endometrial expression of genes (IGF1, IGFBP1 and PTEN) involved in the insulin signalling pathway compared with control women. This may explain the increased risk of EC in PCOS women. This study provides a strong basis for clinical trials aiming to prevent EC in women with PCOS by investigating drugs targeting the insulin signalling pathway. This panel of genes may also serve as clinically useful early biomarkers which predict which women with PCOS will go on to develop EC.

Diep CH, Knutson TP, Lange CA
Active FOXO1 Is a Key Determinant of Isoform-Specific Progesterone Receptor Transactivation and Senescence Programming.
Mol Cancer Res. 2016; 14(2):141-62 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: Progesterone promotes differentiation coupled to proliferation and prosurvival in the breast, but inhibits estrogen-driven growth in the reproductive tract and ovaries. Herein, it is demonstrated, using progesterone receptor (PR) isoform-specific ovarian cancer model systems, that PR-A and PR-B promote distinct gene expression profiles that differ from PR-driven genes in breast cancer cells. In ovarian cancer models, PR-A primarily regulates genes independently of progestin, while PR-B is the dominant ligand-dependent isoform. Notably, FOXO1 and the PR/FOXO1 target gene p21 (CDKN1A) are repressed by PR-A, but induced by PR-B. In the presence of progestin, PR-B, but not PR-A, robustly induced cellular senescence via FOXO1-dependent induction of p21 and p15 (CDKN2B). Chromatin immunoprecipitation (ChIP) assays performed on PR isoform-specific cells demonstrated that while each isoform is recruited to the same PRE-containing region of the p21 promoter in response to progestin, only PR-B elicits active chromatin marks. Overexpression of constitutively active FOXO1 in PR-A-expressing cells conferred robust ligand-dependent upregulation of the PR-B target genes GZMA, IGFBP1, and p21, and induced cellular senescence. In the presence of endogenous active FOXO1, PR-A was phosphorylated on Ser294 and transactivated PR-B at PR-B target genes; these events were blocked by the FOXO1 inhibitor (AS1842856). PR isoform-specific regulation of the FOXO1/p21 axis recapitulated in human primary ovarian tumor explants treated with progestin; loss of progestin sensitivity correlated with high AKT activity.
IMPLICATIONS: This study indicates FOXO1 as a critical component for progesterone signaling to promote cellular senescence and reveals a novel mechanism for transcription factor control of hormone sensitivity.

Park JH, Rasch MG, Qiu J, et al.
Presence of insulin-like growth factor binding proteins correlates with tumor-promoting effects of matrix metalloproteinase 9 in breast cancer.
Neoplasia. 2015; 17(5):421-33 [PubMed] Free Access to Full Article Related Publications
The stroma of breast cancer can promote the disease's progression, but whether its composition and functions are shared among different subtypes is poorly explored. We compared stromal components of a luminal [mouse mammary tumor virus (MMTV)-Neu] and a triple-negative/basal-like [C3(1)-Simian virus 40 large T antigen (Tag)] genetically engineered breast cancer mouse model. The types of cytokines and their expression levels were very different in the two models, as was the extent of innate immune cell infiltration; however, both models showed infiltration of innate immune cells that expressed matrix metalloproteinase 9 (MMP9), an extracellular protease linked to the progression of many types of cancer. By intercrossing with Mmp9 null mice, we found that the absence of MMP9 delayed tumor onset in the C3(1)-Tag model but had no effect on tumor onset in the MMTV-Neu model. We discovered that protein levels of insulin-like growth factor binding protein-1 (IGFBP-1), an MMP9 substrate, were increased in C3(1)-Tag;Mmp9(-/-) compared to C3(1)-Tag;Mmp9(+/+) tumors. In contrast, IGFBP-1 protein expression was low in MMTV-Neu tumors regardless of Mmp9 status. IGFBP-1 binds and antagonizes IGFs, preventing them from activating their receptors to promote cell proliferation and survival. Tumors from C3(1)-Tag;Mmp9(-/-) mice had reduced IGF-1 receptor phosphorylation, consistent with slower tumor onset. Finally, gene expression analysis of human breast tumors showed that high expression of IGFBP mRNA was strongly correlated with good prognosis but not when MMP9 mRNA was also highly expressed. In conclusion, MMP9 has different effects on breast cancer progression depending on whether IGFBPs are expressed.

Minchenko DO, Kharkova AP, Karbovskyi LL, Minchenko OH
Expression of insulin-like growth factor binding protein genes and its hypoxic regulation in U87 glioma cells depends on ERN1 mediated signaling pathway of endoplasmic reticulum stress.
Endocr Regul. 2015; 49(2):73-83 [PubMed] Related Publications
OBJECTIVE: The aim of the present study was to examine the association between the expression of insulin-like growth binding protein-1 and -2 (IGFBP1 and IGFBP2), insulin-like growth factor 2 mRNA binding protein 3/KH domain containing protein over-expressed in cancer (IGF2BP3/KOC1), and HtrA serine peptidase 1/serine protease with IGF-binding domain (HTRA1/PRSS11) genes and function of endoplasmic reticulum stress signaling mediated by ERN1 (endoplasmic reticulum to nucleus signaling 1) as well as the regulation of these genes by hypoxia in U87glioma cells.
METHODS: The expression of IGFBP1, IGFBP2, IGF2BP3, and HTRA1 genes in U87 glioma cells and its subline with ERN1 signaling enzyme loss of function, were analyzed by qPCR. Cells underwent to hypoxia exposure (3% oxygen, 16 h).
RESULTS: The blockade of both enzymatic activities (kinase and endoribonuclease) of ERN1 in glioma cells led to a significant down-regulation of the expression of IGFBP1, IGFBP2, and IGF2BP3 genes and strong up-regulation of HTRA1. At the same time, the inhibition of ERN1 endoribonuclease significantly increased the expression of IGFBP1, IGFBP2, and HTRA1 genes and did not affect the IGF2BP3 gene expression. Hypoxia up-regulated the expression of IGFBP1 and IGFBP2 genes in control glioma cells, with more significant changes in IGFBP1 gene. Furthermore, effect of hypoxia on these gene expressions was significantly lower in glioma cells without ERN1 signaling enzyme function.
CONCLUSIONS: Results of this study demonstrate the dependence of insulin-like growth binding proteins as well as IGF2BP3 and HTRA1 gene expressions in U87 glioma cells on ERN1 signaling enzyme function and hypoxia, indicating its participation in the regulation of metabolic and proliferative processes via IGF/INS receptors, because endoplasmic reticulum stress is an important component of tumor growth and metabolic diseases.

Geis T, Popp R, Hu J, et al.
HIF-2α attenuates lymphangiogenesis by up-regulating IGFBP1 in hepatocellular carcinoma.
Biol Cell. 2015; 107(6):175-88 [PubMed] Related Publications
BACKGROUND INFORMATION: Tumour-associated lymphangiogenesis was identified as an important clinical determinant for the prognosis of hepatocellular carcinoma (HCC) and significantly influences patient survival. However, in this context, little is known about regulation of lymphangiogenesis by hypoxia-inducible factors (HIF). In HCC, mainly HIF-1α was positively correlated with lymphatic invasion and metastasis, whereas a defined role of HIF-2α is missing.
RESULTS: We created a stable knockdown (k/d) of HIF-1α and HIF-2α in HepG2 cells and generated co-cultures of HepG2 spheroids with embryonic bodies. This constitutes an in vitro tumour model mimicking the cancer microenvironment and allows addressing the role of distinct HIF isoforms in regulating HCC lymphangiogenesis. In co-cultures with a HIF-2α k/d, lymphangiogenesis was significantly increased, whereas the k/d of HIF-1α showed no effect. The HIF-2α-dependent lymphangiogenic phenotype was confirmed in vivo using matrigel plug assays with supernatants of HIF-2α k/d HepG2 cells. We identified and verified insulin-like growth factor binding protein 1 (IGFBP1) as a HIF-2α target gene. The potential of HepG2 cells to induce lymphangiogenesis in two independent functional assays was significantly enhanced either by a k/d of HIF-2α or by silencing IGFBP1. Moreover, we confirmed IGF as a potent pro-lymphatic growth factor with IGFBP1 being its negative modulator.
CONCLUSIONS: We propose that HIF-2α acts as an important negative regulator of hepatic lymphangiogenesis in vitro and in vivo by inducing IGFBP1 and thus, interfering with IGF signalling. Therefore, HIF-2α may constitute a critical target in HCC therapy.

Dai B, Ruan B, Wu J, et al.
Insulin-like growth factor binding protein-1 inhibits cancer cell invasion and is associated with poor prognosis in hepatocellular carcinoma.
Int J Clin Exp Pathol. 2014; 7(9):5645-54 [PubMed] Free Access to Full Article Related Publications
Insulin-like growth factor binding protein-1 (IGFBP-1) plays an important role in the development and progression of cancer. However, the expression of IGFBP-1 remains equivocal, and little is known about its clinicopathological significance and prognostic value in hepatocellular carcinoma (HCC). In this study, we evaluated the expression of IGFBP-1 in 90 paired HCC tissues and adjacent non-cancerous liver tissues and analyzed its clinical and prognostic significance. The results showed that IGFBP-1 was detected in cytoplasm as well as cell nucleus, and down-regulated in HCC tissues compared to the adjacent non-cancerous liver tissues. The decreased expression of IGFBP-1 was correlated with tumor differentiation, liver cirrhosis, microvascular invasion or metastasis, TNM stage and poor survival. Moreover, low levels of IGFBP-1 may be an independent prognostic indicator for the survival of patients with HCC. We also evaluated its function by adding recombinant IGFBP-1 to the cultured HCC cell lines HepG2 and MHCC97-H. The result of the invasion chamber assay showed that IGFBP-1 could inhibit the invasion of HepG2 and MHCC97-H. MMP-9 secretion by these cells was significantly decreased when the cells were treated with IGFBP-1. Our results suggest that IGFBP-1 inhibits the invasion and metastasis of HCC cells and that IGFBP-1 may be useful as a valuable marker for the prognosis of patients with HCC.

Ozhand A, Lee E, Wu AH, et al.
Variation in inflammatory cytokine/growth-factor genes and mammographic density in premenopausal women aged 50-55.
PLoS One. 2013; 8(6):e65313 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Mammographic density (MD) has been found to be an independent risk factor for breast cancer. Although data from twin studies suggest that MD has a strong genetic component, the exact genes involved remain to be identified. Alterations in stromal composition and the number of epithelial cells are the most predominant histopathological determinants of mammographic density. Interactions between the breast stroma and epithelium are critically important in the maturation and development of the mammary gland and the cross-talk between these cells are mediated by paracrine growth factors and cytokines. The potential impact of genetic variation in growth factors and cytokines on MD is largely unknown.
METHODS: We investigated the association between 89 single nucleotide polymorphisms (SNPs) in 7 cytokine/growth-factor genes (FGFR2, IGFBP1, IGFBP3, TGFB1, TNF, VEGF, IL6) and percent MD in 301 premenopausal women (aged 50 to 55 years) participating in the Norwegian Breast Cancer Screening Program. We evaluated the suggestive associations in 216 premenopausal Singapore Chinese Women of the same age.
RESULTS: We found statistically significant associations between 9 tagging SNPs in the IL6 gene and MD in Norwegian women; the effect ranged from 3-5% in MD per variant allele (p-values = 0.02 to 0.0002). One SNP in the IL6 (rs10242595) significantly influenced MD in Singapore Chinese women.
CONCLUSION: Genetic variations in IL6 may be associated with MD and therefore may be an indicator of breast cancer risk in premenopausal women.

Levine AJ, Ihenacho U, Lee W, et al.
Genetic variation in insulin pathway genes and distal colorectal adenoma risk.
Int J Colorectal Dis. 2012; 27(12):1587-95 [PubMed] Related Publications
BACKGROUND: Insulin, glucose, and other insulin-related proteins that mediate insulin signaling are associated with colorectal neoplasia risk, but associations with common genetic variation in insulin axis genes are less clear. In this study, we used a comprehensive tag single-nucleotide polymorphisms (SNPs) approach to define genetic variation in six insulin axis genes (IGF1, IGF2, IGFBP1, IGFBP3, IRS1, and IRS2) and three genes associated with estrogen signaling (ESR1, ESR2, and PGR).
METHODS: We assessed associations between SNPs and distal colorectal adenoma (CRA) risk in a case-control study of 1,351 subjects. Cases were individuals with one or more adenomas diagnosed during sigmoidoscopy, and controls were individuals with no adenomas at the sigmoidoscopy exam. We used unconditional logistic regression assuming an additive model to assess SNP-specific risks adjusting for multiple comparisons with P (act).
RESULTS: Distal adenoma risk was significantly increased for one SNP in IGF2 [per minor allele OR = 1.41; 95 % confidence interval (CI) = 1.16, 1.67; P (act) = 0.005] and decreased for an ESR2 SNP (per minor allele OR = 0.78; 95 % CI = 0.66, 0.91; P (act) = 0.041). There was no statistically significant heterogeneity of these associations by race, sex, BMI, physical activity, or, in women, hormone replacement therapy use. Risk estimates did not differ in the colon versus rectum or for smaller (<1 cm) versus larger (>1 cm) adenomas.
CONCLUSIONS: These data suggest that selected genetic variability in IGF2 and ESR2 may be modifiers of CRA risk.

Gray A, Aronson WJ, Barnard RJ, et al.
Global Igfbp1 deletion does not affect prostate cancer development in a c-Myc transgenic mouse model.
J Endocrinol. 2011; 211(3):297-304 [PubMed] Free Access to Full Article Related Publications
Circulating insulin-like growth factor binding protein 1 (IGFBP1) levels vary in response to nutritional status, and pre-clinical studies suggest that elevated IGFBP1 may be protective against the development and progression of prostate cancer. We hypothesized that global deletion of Igfbp1 would accelerate the development of prostate cancer in a c-Myc transgenic mouse model. To test our hypothesis, c-Myc transgenic mice (Myc/BP-1 wild-type (WT)) were crossed and interbred with the Igfbp1 knockout mice (Myc/BP-1 KO). The animals were placed on a high-protein diet at weaning, weighed every 2 weeks, and euthanized at 16 weeks of age. Prostate histopathology was assessed and proliferation status was determined by Ki-67 and proliferating cell nuclear antigen analyses. IGF-related serum biomarkers and body composition were measured. No significant difference in the incidence of prostate cancer was observed between the Myc/BP-1 KO and the Myc/BP-1 WT mice (65 and 80% respectively, P=0.48). Proliferation was significantly decreased by 71% in prostate tissue of Myc/BP-1 KO mice compared with Myc/BP-1 WT mice. Myc/BP-1 KO mice exhibited a significant 6.7% increase in body weight relative to the Myc/BP-1 WT mice that was attributed to an increase in fat mass. Fasting insulin levels were higher in the Myc/BP-1 KO mice without any difference between the groups in fasting glucose concentrations. Thus, contrary to our hypothesis, global deletion of Igfbp1 in a c-Myc transgenic mouse model did not accelerate the development of prostate cancer. Global Igfbp1 deletion did result in a significant increase in body weight and body fat mass. Further studies are required to understand the underlying mechanisms for these metabolic effects.

Dong X, Li Y, Tang H, et al.
Insulin-like growth factor axis gene polymorphisms modify risk of pancreatic cancer.
Cancer Epidemiol. 2012; 36(2):206-11 [PubMed] Related Publications
OBJECTIVE: Insulin-like growth factor (IGF)-axis genes plays a critical role in cancer development and progression via their impact on the RAS/MAPK/ERK and PI3K/AKT/mTOR signaling pathways. We hypothesized that IGF-axis genetic variants modify individual susceptibility to pancreatic cancer.
METHODS: We retrospectively genotyped 41 single-nucleotide polymorphisms of 10 IGF-axis genes (IGF1, IGF2, IGF1R, IGF2R, IGFBP1, IGFBP3, IGFBP5, IRS1, IRS2, and IRS4) in 706 pancreatic cancer patients and 706 cancer-free controls using Sequenom and TaqMan technology. The association between genotype and pancreatic cancer risk was evaluated using multivariate logistic regression. A P value ≤.007 at a false discovery rate of 10% was set as the significance level.
RESULTS: We observed that the IGF1 *10212C>A and Ex4+2776G>A and IGF1R IVS2-70184A>G and IVS2+46329T>C variant genotypes were significantly associated with decreased pancreatic cancer risk (odds ratio [OR] range, 0.60-0.75) and that IGFBP1 Ex4+111A>G (I253M) was significantly associated with increased pancreatic cancer risk (OR=1.46) after adjusted for other risk factors and multiple comparisons (P≤.007). IGF2R and IGFBP3 variant haplotypes were associated with increased and decreased pancreatic cancer risk, respectively (P<.001). We also observed a weak interaction of the IGF1R IVS2+46329T>C and IGF2R Ex45+11C>T (L2222L) genotypes with diabetes (P(interaction)=.05) and interaction of IGF2R and IRS1 genotypes with alcohol consumption (P(interaction)=.03 and .019, respectively) on increased pancreatic cancer risk.
CONCLUSION: These findings support our hypothesis that polymorphic variants of IGF-axis genes act alone or jointly with other risk factors to affect susceptibility to pancreatic cancer.

Pearce CL, Doherty JA, Van Den Berg DJ, et al.
Genetic variation in insulin-like growth factor 2 may play a role in ovarian cancer risk.
Hum Mol Genet. 2011; 20(11):2263-72 [PubMed] Free Access to Full Article Related Publications
The insulin-like growth factor (IGF) signaling axis plays an important role in cancer biology. We hypothesized that genetic variation in this pathway may influence risk of ovarian cancer. A three-center study of non-Hispanic whites including 1880 control women, 1135 women with invasive epithelial ovarian cancer and 321 women with borderline epithelial ovarian tumors was carried out to test the association between tag single-nucleotide polymorphisms (tSNPs) (n=58) in this pathway and risk of ovarian cancer. We found no association between variation in IGF1, IGFBP1 or IGFBP3 and risk of invasive disease, whereas five tSNPs in IGF2 were associated with risk of invasive epithelial ovarian cancer at P<0.05 and followed-up one of the associated SNPs. We conducted genotyping in 3216 additional non-Hispanic white cases and 5382 additional controls and were able to independently replicate our initial findings. In the combined set of studies, rs4320932 was associated with a 13% decreased risk of ovarian cancer per copy of the minor allele carried (95% confidence interval 0.81-0.93, P-trend=7.4 × 10(-5)). No heterogeneity of effect across study centers was observed (p(het)=0.25). IGF2 is emerging as an important gene for ovarian cancer; additional genotyping is warranted to further confirm these associations with IGF2 and to narrow down the region harboring the causal SNP.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. IGFBP1, Cancer Genetics Web: http://www.cancer-genetics.org/IGFBP1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999