Gene Summary

Gene:CXCR2; C-X-C motif chemokine receptor 2
Aliases: CD182, IL8R2, IL8RA, IL8RB, CMKAR2, CDw128b
Summary:The protein encoded by this gene is a member of the G-protein-coupled receptor family. This protein is a receptor for interleukin 8 (IL8). It binds to IL8 with high affinity, and transduces the signal through a G-protein activated second messenger system. This receptor also binds to chemokine (C-X-C motif) ligand 1 (CXCL1/MGSA), a protein with melanoma growth stimulating activity, and has been shown to be a major component required for serum-dependent melanoma cell growth. This receptor mediates neutrophil migration to sites of inflammation. The angiogenic effects of IL8 in intestinal microvascular endothelial cells are found to be mediated by this receptor. Knockout studies in mice suggested that this receptor controls the positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. This gene, IL8RA, a gene encoding another high affinity IL8 receptor, as well as IL8RBP, a pseudogene of IL8RB, form a gene cluster in a region mapped to chromosome 2q33-q36. Alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Nov 2009]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:C-X-C chemokine receptor type 2
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (24)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CXCR2 (cancer-related)

Imafuji H, Matsuo Y, Ueda G, et al.
Acquisition of gemcitabine resistance enhances angiogenesis via upregulation of IL‑8 production in pancreatic cancer.
Oncol Rep. 2019; 41(6):3508-3516 [PubMed] Related Publications
Gemcitabine (Gem) is widely used as chemotherapy for pancreatic cancer (PaCa), but its effect is not fully satisfactory. One of the reasons for this is the acquisition of Gem resistance (Gem‑R). To elucidate the mechanism of Gem‑R, two Gem‑R PaCa cell lines were established from AsPC‑1 and MIA PaCa‑2 cells. It was demonstrated that expression of interleukin‑8 (IL‑8) mRNA was significantly upregulated in Gem‑R PaCa cells by cDNA microarray and RT‑qPCR analyses. Increased IL‑8 secretion by Gem‑R cells was confirmed by cytokine array and enzyme‑linked immunosorbent assay. Moreover, we found that co‑culture with Gem‑R PaCa cells significantly enhanced tube formation of human umbilical vein endothelial cells, and treatment with an anti‑CXCR2 (main receptor for IL‑8) antibody significantly prevented this effect. We previously reported that a chemokine network centered on the IL‑8/CXCR2 axis plays an important role in PaCa angiogenesis, and suppression of this axis has an antitumor effect. Since acquisition of Gem‑R increased IL‑8 production and consequently increased tumor angiogenesis, the IL‑8/CXCR2 axis may be a potential novel therapeutic target for PaCa after acquiring Gem‑R.

Münch NS, Fang HY, Ingermann J, et al.
High-Fat Diet Accelerates Carcinogenesis in a Mouse Model of Barrett's Esophagus via Interleukin 8 and Alterations to the Gut Microbiome.
Gastroenterology. 2019; 157(2):492-506.e2 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
BACKGROUND & AIMS: Barrett's esophagus (BE) is a precursor to esophageal adenocarcinoma (EAC). Progression from BE to cancer is associated with obesity, possibly due to increased abdominal pressure and gastroesophageal reflux disease, although this pathogenic mechanism has not been proven. We investigated whether environmental or dietary factors associated with obesity contribute to the progression of BE to EAC in mice.
METHODS: Tg(ED-L2-IL1RN/IL1B)#Tcw mice (a model of BE, called L2-IL1B mice) were fed a chow (control) or high-fat diet (HFD) or were crossbred with mice that express human interleukin (IL) 8 (L2-IL1B/IL8 mice). Esophageal tissues were collected and analyzed for gene expression profiles and by quantitative polymerase chain reaction, immunohistochemistry, and flow cytometry. Organoids were established from BE tissue of mice and cultured with serum from lean or obese individuals or with neutrophils from L2-IL1B mice. Feces from mice were analyzed by 16s ribosomal RNA sequencing and compared to 16s sequencing data from patients with dysplasia or BE. L2-IL1B were mice raised in germ-free conditions.
RESULTS: L2-IL1B mice fed an HFD developed esophageal dysplasia and tumors more rapidly than mice fed the control diet; the speed of tumor development was independent of body weight. The acceleration of dysplasia by the HFD in the L2-IL1B mice was associated with a shift in the gut microbiota and an increased ratio of neutrophils to natural killer cells in esophageal tissues compared with mice fed a control diet. We observed similar differences in the microbiomes from patients with BE that progressed to EAC vs patients with BE that did not develop into cancer. Tissues from dysplasias of L2-IL1B mice fed the HFD contained increased levels of cytokines that are produced in response to CXCL1 (the functional mouse homolog of IL8, also called KC). Serum from obese patients caused organoids from L2-IL1B/IL8 mice to produce IL8. BE tissues from L2-IL1B mice fed the HFD and from L2-IL1B/IL8 mice contained increased numbers of myeloid cells and cells expressing Cxcr2 and Lgr5 messenger RNAs (epithelial progenitors) compared with mice fed control diets. BE tissues from L2-IL1B mice raised in germ-free housing had fewer progenitor cells and developed less dysplasia than in L2-IL1 mice raised under standard conditions; exposure of fecal microbiota from L2-IL1B mice fed the HFD to L2-IL1B mice fed the control diet accelerated tumor development.
CONCLUSIONS: In a mouse model of BE, we found that an HFD promoted dysplasia by altering the esophageal microenvironment and gut microbiome, thereby inducing inflammation and stem cell expansion, independent of obesity.

Brooks RA, Tritchler DS, Darcy KM, et al.
GOG 8020/210: Risk stratification of lymph node metastasis, disease progression and survival using single nucleotide polymorphisms in endometrial cancer: An NRG oncology/gynecologic oncology group study.
Gynecol Oncol. 2019; 153(2):335-342 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
OBJECTIVES: The ability to stratify a patient's risk of metastasis and survival permits more refined care. A proof of principle study was undertaken to investigate the relationship between single nucleotide polymorphisms (SNPs) in literature based candidate cancer genes and the risk of nodal metastasis and clinical outcome in endometrioid endometrial cancer (EEC) patients.
METHODS: Surgically-staged EEC patients from the Gynecologic Oncology Group or Washington University School of Medicine with germline DNA available were eligible. Fifty-four genes represented by 384 SNPs, were evaluated by Illumina Custom GoldenGate array. Association with lymph node metastases was the primary outcome. Progression-free survival (PFS) and overall survival (OS) was also evaluated.
RESULTS: 361 SNPs with high quality genotype data were evaluated in 337 patients with outcome data. Five SNPs in CXCR2 had an odds ratio (OR) between 0.68 and 0.70 (p-value ≤ 0.025). The A allele rs946486 in ABL had an OR of 1.5 (p-value = 0.01) for metastasis. The G allele in rs7795743 in EGFR had an OR for metastasis of 0.68 (p-value = 0.02) and hazard ratio (HR) for progression of 0.66 (p-value = 0.004). Importantly, no SNP met genome wide significance after adjusting for multiple test correcting and clinical covariates. The A allele in rs2159359 SNP in NME1 and the G allele in rs13222385 in EGFR were associated with worse OS. Both exhibited genome wide significance; rs13222385 remained significant after adjusting for prognostic clinical variables.
CONCLUSION: SNPs in cancer genes including rs2159359 SNP in NME1 and rs13222385 in EGFR may stratify risk in EEC and are prioritized for further investigation.

Bien SA, Su YR, Conti DV, et al.
Genetic variant predictors of gene expression provide new insight into risk of colorectal cancer.
Hum Genet. 2019; 138(4):307-326 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Genome-wide association studies have reported 56 independently associated colorectal cancer (CRC) risk variants, most of which are non-coding and believed to exert their effects by modulating gene expression. The computational method PrediXcan uses cis-regulatory variant predictors to impute expression and perform gene-level association tests in GWAS without directly measured transcriptomes. In this study, we used reference datasets from colon (n = 169) and whole blood (n = 922) transcriptomes to test CRC association with genetically determined expression levels in a genome-wide analysis of 12,186 cases and 14,718 controls. Three novel associations were discovered from colon transverse models at FDR ≤ 0.2 and further evaluated in an independent replication including 32,825 cases and 39,933 controls. After adjusting for multiple comparisons, we found statistically significant associations using colon transcriptome models with TRIM4 (discovery P = 2.2 × 10

Cabrero-de Las Heras S, Martínez-Balibrea E
CXC family of chemokines as prognostic or predictive biomarkers and possible drug targets in colorectal cancer.
World J Gastroenterol. 2018; 24(42):4738-4749 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women, worldwide. In the early stages of the disease, biomarkers predicting early relapse would improve survival rates. In metastatic patients, the use of predictive biomarkers could potentially result in more personalized treatments and better outcomes. The CXC family of chemokines (CXCL1 to 17) are small (8 to 10 kDa) secreted proteins that attract neutrophils and lymphocytes. These chemokines signal through chemokine receptors (CXCR) 1 to 8. Several studies have reported that these chemokines and receptors have a role in either the promotion or inhibition of cancer, depending on their capacity to suppress or stimulate the action of the immune system, respectively. In general terms, activation of the CXCR1/CXCR2 pathway or the CXCR4/CXCR7 pathway is associated with tumor aggressiveness and poor prognosis; therefore, the specific inhibition of these receptors is a possible therapeutic strategy. On the other hand, the lesser known CXCR3 and CXCR5 axes are generally considered to be tumor suppressor signaling pathways, and their stimulation has been suggested as a way to fight cancer. These pathways have been studied in tumor tissues (using immunohistochemistry or measuring mRNA levels) or serum [using enzyme-linked immuno sorbent assay (ELISA) or multiplexing techniques], among other sample types. Common variants in genes encoding for the CXC chemokines have also been investigated as possible biomarkers of the disease. This review summarizes the most recent findings on the role of CXC chemokines and their receptors in CRC and discusses their possible value as prognostic or predictive biomarkers as well as the possibility of targeting them as a therapeutic strategy.

Feng X, Zhang D, Li X, et al.
CXCL5, the upregulated chemokine in patients with uterine cervix cancer, in vivo and in vitro contributes to oncogenic potential of Hela uterine cervix cancer cells.
Biomed Pharmacother. 2018; 107:1496-1504 [PubMed] Related Publications
CXCL5 is showed a surprisingly elevated profile and implicated in tumorigenesis in several tumors. However, the expression and function of CXCL5 in uterine cervix cancer (UCC) remain largely unknown. The current study aimed to elucidate the expression pattern of CXCL5 in human UCC tissues and Hela cervix cancer cell, as well as its functions in Hela cells. Our data showed that CXCL5 and its receptor CXCR2 were expressed by Hela uterine cervix cancer cells. CXCL5 was upregulated in UCC tissues, and its overexpression was positively correlated with age, but did not correlate with clinical stages and tumor infiltration. Exogenous administration of CXCL5 and CXCL5 overexpression contributed to proliferation and migration activities of Hela cells in vitro, consistent with this, CXCL5 overexpression also promoted growth of Hela cells in a nude mouse xenograft model. At the gene level, CXCL5 overexpression regulated the expression of tumor-related genes including ERK, p-ERK, AKT, p-AKT, DIABOL, NUMB, NDRG3 and CXCR2. Taken together, CXCL5 may contribute to a dominant role in UCC progression and sever as a potential molecular therapeutic target for UCC.

Uddin MM, Zou Y, Sharma T, et al.
Proteasome inhibition induces IKK-dependent interleukin-8 expression in triple negative breast cancer cells: Opportunity for combination therapy.
PLoS One. 2018; 13(8):e0201858 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Triple negative breast cancer (TNBC) cells express increased levels of the pro-inflammatory and pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8), which promotes their proliferation and migration. Because TNBC patients are unresponsive to current targeted therapies, new therapeutic strategies are urgently needed. While proteasome inhibition by bortezomib (BZ) or carfilzomib (CZ) has been effective in treating hematological malignancies, it has been less effective in solid tumors, including TNBC, but the mechanisms are incompletely understood. Here we report that proteasome inhibition significantly increases expression of IL-8, and its receptors CXCR1 and CXCR2, in TNBC cells. Suppression or neutralization of the BZ-induced IL-8 potentiates the BZ cytotoxic and anti-proliferative effect in TNBC cells. The IL-8 expression induced by proteasome inhibition in TNBC cells is mediated by IκB kinase (IKK), increased nuclear accumulation of p65 NFκB, and by IKK-dependent p65 recruitment to IL-8 promoter. Importantly, inhibition of IKK activity significantly decreases proliferation, migration, and invasion of BZ-treated TNBC cells. These data provide the first evidence demonstrating that proteasome inhibition increases the IL-8 signaling in TNBC cells, and suggesting that IKK inhibitors may increase effectiveness of proteasome inhibitors in treating TNBC.

Zacharias M, Brcic L, Eidenhammer S, Popper H
Bulk tumour cell migration in lung carcinomas might be more common than epithelial-mesenchymal transition and be differently regulated.
BMC Cancer. 2018; 18(1):717 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
BACKGROUND: Epithelial-to-mesenchymal transition (EMT) is one mechanism of carcinoma migration, while complex tumour migration or bulk migration is another - best demontrated by tumour cells invading blood vessels.
METHODS: Thirty cases of non-small cell lung carcinomas were used for identifying genes responsible for bulk cell migration, 232 squamous cell and adenocarcinomas to identify bulk migration rates. Genes expressed differently in the primary tumour and in the invasion front were regarded as relevant in migration and further validated in 528 NSCLC cases represented on tissue microarrays (TMAs) and metastasis TMAs.
RESULTS: Markers relevant for bulk cancer cell migration were regulated differently when compared with EMT: Twist expressed in primary tumour, invasion front, and metastasis was not associated with TGFβ1 and canonical Wnt, as Slug, Snail, and Smads were negative and β-Catenin expressed membraneously. In the majority of tumours, E-Cadherin was downregulated at the invasive front, but not absent, but, coexpressed with N-Cadherin. Vimentin was coexpressed with cytokeratins at the invasion site in few cases, whereas fascin expression was seen in a majority. Expression of ERK1/2 was downregulated, PLCγ was only expressed at the invasive front and in metastasis. Brk and Mad, genes identified in Drosophila border cell migration, might be important for bulk migration and metastasis, together with invadipodia proteins Tks5 and Rab40B, which were only upregulated at the invasive front and in metastasis. CXCR1 was expressed equally in all carcinomas, as opposed to CXCR2 and 4, which were only expressed in few tumours.
CONCLUSION: Bulk cancer cell migration seems predominant in AC and SCC. Twist, vimentin, fascin, Mad, Brk, Tsk5, Rab40B, ERK1/2 and PLCγ are associated with bulk cancer cell migration. This type of migration requires an orchestrated activation of proteins to keep the cells bound to each other and to coordinate movement. This hypothesis needs to be proven experimentally.

Bouris P, Manou D, Sopaki-Valalaki A, et al.
Serglycin promotes breast cancer cell aggressiveness: Induction of epithelial to mesenchymal transition, proteolytic activity and IL-8 signaling.
Matrix Biol. 2018; 74:35-51 [PubMed] Related Publications
Serglycin is an intracellular proteoglycan that is expressed and constitutively secreted by numerous malignant cells, especially prominent in the highly-invasive, triple-negative MDA-MB-231 breast carcinoma cells. Notably, de novo expression of serglycin in low aggressive estrogen receptor α (ERα)-positive MCF7 breast cancer cells promotes an aggressive phenotype. In this study, we discovered that serglycin promoted epithelial to mesenchymal transition (EMT) in MCF7 cells as shown by increased expression of mesenchymal markers vimentin, fibronectin and EMT-related transcription factor Snail2. These phenotypic traits were also associated with the development of drug resistance toward various chemotherapy agents and induction of their proteolytic potential as shown by the increased expression of matrix metalloproteinases, including MMP-1, MMP-2, MMP-9, MT1-MMP and up-regulation of urokinase-type plasminogen activator. Knockdown of serglycin markedly reduced the expression of these proteolytic enzymes in MDA-MB-231 cells. In addition, serglycin expression was closely linked to a pro-inflammatory gene signature including the chemokine IL-8 in ERα-negative breast cancer cells and tumors. Notably, serglycin regulated the secretion of IL-8 in breast cancer cells independently of their ERα status and promoted their proliferation, migration and invasion by triggering IL-8/CXCR2 downstream signaling cascades including PI3K, Src and Rac activation. Thus, serglycin promotes the establishment of a pro-inflammatory milieu in breast cancer cells that evokes an invasive mesenchymal phenotype via autocrine activation of IL-8/CXCR2 signaling axis.

Taki M, Abiko K, Baba T, et al.
Snail promotes ovarian cancer progression by recruiting myeloid-derived suppressor cells via CXCR2 ligand upregulation.
Nat Commun. 2018; 9(1):1685 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Snail is a major transcriptional factor that induces epithelial-mesenchymal transition (EMT). In this study, we explore the effect of Snail on tumor immunity. Snail knockdown in mouse ovarian cancer cells suppresses tumor growth in immunocompetent mice, associated with an increase of CD8

Kumar A, Cherukumilli M, Mahmoudpour SH, et al.
ShRNA-mediated knock-down of CXCL8 inhibits tumor growth in colorectal liver metastasis.
Biochem Biophys Res Commun. 2018; 500(3):731-737 [PubMed] Related Publications
CXCL8 belongs to proinflammatory chemokines that are predominantly involved in neutrophil chemotaxis and degranulation. Several studies have suggested that secretion of CXCL8 from cancer cells have a profound effect on tumor microenvironment. In this study, in continuation to our previous work of understanding the global picture of invasion related genes in colorectal liver metastases, we clearly show an up-regulation of CXCL8 expression in the tumor cells at the invasion front as compared to the tumor cells in the inner parts of the tumor. Furthermore, ShRNA mediated down-regulation of CXCL8 resulted in inhibition of cell proliferation, viability and invasion in vitro and a near complete growth reduction of tumor in vivo. We showed that CXCL8 secreted by tumor cells at the invasion front were able to promote migration through angiogenesis by upregulating VEGFA and invasion via the AKT/GSK3β/β-catenin/MMP7 pathway by upregulating BCL-2 confirming the key role of CXCL8 during tumor progression.

Hiramatsu S, Tanaka H, Nishimura J, et al.
Neutrophils in primary gastric tumors are correlated with neutrophil infiltration in tumor-draining lymph nodes and the systemic inflammatory response.
BMC Immunol. 2018; 19(1):13 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
BACKGROUND: Tumor-Associated Neutrophils (TANs) may be able to induce lymphangiogenesis and angiogenesis, although the detailed roles of TANs remain unclear. The Neutrophil-Lymphocyte Ratio (NLR) is an inflammation-based prognostic factor for gastric cancer. This study aimed to investigate the distribution of CD15
RESULTS: Immunohistochemical staining showed that the median number of CD15
CONCLUSION: Our findings suggested that local infiltration of CD15

Sasaki S, Baba T, Muranaka H, et al.
Involvement of Prokineticin 2-expressing Neutrophil Infiltration in 5-Fluorouracil-induced Aggravation of Breast Cancer Metastasis to Lung.
Mol Cancer Ther. 2018; 17(7):1515-1525 [PubMed] Related Publications
Adjuvant chemotherapy is used for human breast cancer patients, even after curative surgery of primary tumor, to prevent tumor recurrence primarily as a form of metastasis. However, anticancer drugs can accelerate metastasis in several mouse metastasis models. Hence, we examined the effects of postsurgical administration with 5-fluorouracil (5-FU), doxorubicin, and cyclophosphamide, on lung metastasis process, which developed after the resection of the primary tumor arising from the orthotopic injection of a mouse triple-negative breast cancer cell line, 4T1. Only 5-FU markedly increased the numbers and sizes of lung metastasis foci, with enhanced tumor cell proliferation and angiogenesis as evidenced by increases in Ki67-positive cell numbers and CD31-positive areas, respectively. 5-FU-mediated augmented lung metastasis was associated with increases in intrapulmonary neutrophil numbers and expression of neutrophilic chemokines, Cxcl1 and Cxcl2 in tumor cells, with few effects on intrapulmonary T-cell or macrophage numbers. 5-FU enhanced Cxcl1 and Cxcl2 expression in 4T1 cells in a NFκB-dependent manner. Moreover, the administration of a neutrophil-depleting antibody or a Cxcr2 antagonist, SB225002, significantly attenuated 5-FU-mediated enhanced lung metastasis with depressed neutrophil infiltration. Furthermore, infiltrating neutrophils and 4T1 cells abundantly expressed prokineticin-2 (

Inoue A, Mizushima T, Wu X, et al.
A miR-29b Byproduct Sequence Exhibits Potent Tumor-Suppressive Activities via Inhibition of NF-κB Signaling in
Mol Cancer Ther. 2018; 17(5):977-987 [PubMed] Related Publications
We previously demonstrated that miR-29b-3p is a hopeful miRNA-based therapy against colorectal cancer. In this study, we aimed to clarify a value of miR-29b-1-5p as a next-generation treatment, especially for

Zhang W, Wu Q, Wang C, et al.
AKIP1 promotes angiogenesis and tumor growth by upregulating CXC-chemokines in cervical cancer cells.
Mol Cell Biochem. 2018; 448(1-2):311-320 [PubMed] Related Publications
Upregulation of A-kinase-interacting protein 1 (AKIP1) has been observed in breast and esophageal cancers, indicating that AKIP1 may be a potent oncogenic protein. However, the role of AKIP1 in cervical cancer still remains unknown. This study aimed to explore the role of AKIP1 in cervical cancer and to investigate the underlying mechanism of AKIP1 in tumor growth. Expression of AKIP1 in cervical cancer cells was determined by qRT-PCR and western blotting. Cell-Light EdU and colony formation assays were used to determine cell proliferation. CXCL1 and CXCL8 proteins were quantified by ELISA kits. Western blotting and qRT-PCR were used to examine the alterations in signaling-related proteins and mRNA, respectively. Endothelial cell tube formation assay was performed to evaluate the effect of AKIP1 on angiogenesis. A BALB/c nude mouse xenograft model was used to evaluate the role of AKIP1 in vivo. Cancer cell proliferation was inhibited and tumor growth and angiogenesis restrained in BALB/c nude mice by suppressing AKIP1 expression in cervical cancer cell lines. In addition, overexpression of AKIP1 in cervical cancer cells elevated the levels of CXCL1, CXCL2, and CXCL8. These three chemokines were not only involved in endothelial tube formation by binding to the endothelial receptor CXCR2, but also in cervical cancer cell proliferation and clone formation, which were induced by overexpression of AKIP1. Furthermore, we found that AKIP1-induced chemokine expression was decreased by an inhibitor of nuclear factor kappa-B kinase subunit β. These results show that AKIP1 is crucial in cervical cancer angiogenesis and growth by elevating the levels of the NF-κB-dependent chemokines CXCL1, CXCL2, and CXCL8.

Yung MM, Tang HW, Cai PC, et al.
GRO-α and IL-8 enhance ovarian cancer metastatic potential via the CXCR2-mediated TAK1/NFκB signaling cascade.
Theranostics. 2018; 8(5):1270-1285 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Intraperitoneal metastasis is a common occurrence and is usually involved in the poor prognosis of ovarian cancer. Its specific metastatic pattern implies that certain indispensable microenvironmental factors secreted in the peritoneal cavity can direct metastatic ovarian cancer cells to permissive niches for secondary lesion formation. However, the underlying molecular mechanisms are ill defined. Herein, we report that GRO-α and IL-8 are predominately upregulated in culture media derived from either normal or cancerous omenta and are associated with increased ovarian cancer aggressiveness.

Chung L, Thiele Orberg E, Geis AL, et al.
Bacteroides fragilis Toxin Coordinates a Pro-carcinogenic Inflammatory Cascade via Targeting of Colonic Epithelial Cells.
Cell Host Microbe. 2018; 23(2):203-214.e5 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Pro-carcinogenic bacteria have the potential to initiate and/or promote colon cancer, in part via immune mechanisms that are incompletely understood. Using Apc

Song H, Wang W, Shen B, et al.
Pretreatment with probiotic Bifico ameliorates colitis-associated cancer in mice: Transcriptome and gut flora profiling.
Cancer Sci. 2018; 109(3):666-677 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Individuals with inflammatory bowel disease are at high risk of developing colitis-associated cancer (CAC). Strategies to block the process from inflammatory bowel disease to CAC should be considered. In the experiment, we aim to explore the chemopreventive efficacy of the probiotic cocktail Bifico and its potential mechanism in azoxymethane and dextran sodium sulphate-induced CAC in mice. Oral pretreatment of Bifico was adopted to evaluate its protective effect. The colorectums of 35 C57BL/6 mice were collected and examined for the degree of inflammation and tumorigenesis. Comparative 16S rRNA sequencing was carried out to observe Bifico-target alterations in gene expression and microbiota structure. We found that pretreatment of Bifico alleviated intestinal inflammation and reduced tumor formation. Furthermore, we identified a subset of genes as potential targets of Bifico treatment, including CXCL1, CXCL2, CXCL3, and CXCL5, which are all ligands of C-X-C motif receptor 2 (CXCR2). The 16S rRNA sequencing showed that Bifico decreased the abundance of genera Desulfovibrio, Mucispirillum, and Odoribacter, and a bloom of genus Lactobacillus was detected. Notably, we found that an abundance of these Bifico-target taxa was significantly associated with the expression of CXCR2 ligand genes. Our studies indicate that Bifico, given orally, can ameliorate CAC in mice through intervening with the possible link between Desulfovibrio, Mucispirillum, Odoribacter, Lactobacillus, and CXCR2 signaling.

Wu S, Saxena S, Varney ML, Singh RK
CXCR1/2 Chemokine Network Regulates Melanoma Resistance to Chemotherapies Mediated by NF-κB.
Curr Mol Med. 2017; 17(6):436-449 [PubMed] Related Publications
BACKGROUND: Cancer-related inflammation is recognized as a driver for tumor progression and chemokines are important players in both inflammation and the progression of many cancer types. CXC chemokines, especially CXCL8, have been implicated in melanoma growth and metastasis, while less is known for their roles in drug resistance.
METHODS: We generated drug-resistant cells by continuous exposure to chemotherapeutic drugs and analyzed the mechanism(s) of therapy resistance in malignant melanoma.
RESULTS: We report chemotherapies induced upregulation of a variety of chemokines in the CXCR1/CXCR2 network by an NF-κB-dependent mechanism. Notably, analysis of the drug-resistant melanoma cell line selected after prolonged exposure to chemotherapeutic drug dacarbazine revealed higher levels of CXCL8 and CXCR2 compared with parent cells as a signature of drug resistance. CXCR2 neutralization markedly improved sensitivity to dacarbazine in melanoma cells.
CONCLUSION: These data provide insights into what drives melanoma cells to survive after chemotherapy treatment, thus pointing to strategies for developing combined drug therapies for combating the problem of chemotherapy resistance in melanoma.

Spurgeon ME, den Boon JA, Horswill M, et al.
Human papillomavirus oncogenes reprogram the cervical cancer microenvironment independently of and synergistically with estrogen.
Proc Natl Acad Sci U S A. 2017; 114(43):E9076-E9085 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
High-risk human papillomaviruses (HPVs) infect epithelial cells and are causally associated with cervical cancer, but HPV infection is not sufficient for carcinogenesis. Previously, we reported that estrogen signaling in the stromal tumor microenvironment is associated with cervical cancer maintenance and progression. We have now determined how HPV oncogenes and estrogen treatment affect genome-wide host gene expression in laser-captured regions of the cervical epithelium and stroma of untreated or estrogen-treated nontransgenic and HPV-transgenic mice. HPV oncogene expression in the cervical epithelium elicited significant gene-expression changes in the proximal stromal compartment, and estrogen treatment uniquely affected gene expression in the cervical microenvironment of HPV-transgenic mice compared with nontransgenic mice. Several potential estrogen-induced paracrine-acting factors were identified in the expression profile of the cervical tumor microenvironment. The microenvironment of estrogen-treated HPV-transgenic mice was significantly enriched for chemokine/cytokine activity and inflammatory and immune functions associated with carcinogenesis. This inflammatory signature included several proangiogenic CXCR2 receptor ligands. A subset of the same CXCR2 ligands was likewise increased in cocultures of early-passage cells from human cervical samples, with levels highest in cocultures of cervical fibroblasts and cancer-derived epithelial cells. Our studies demonstrate that high-risk HPV oncogenes profoundly reprogram the tumor microenvironment independently of and synergistically with estrogen. These observations illuminate important means by which HPVs can cause cancer through alterations in the tumor microenvironment.

Gabellini C, Gómez-Abenza E, Ibáñez-Molero S, et al.
Interleukin 8 mediates bcl-xL-induced enhancement of human melanoma cell dissemination and angiogenesis in a zebrafish xenograft model.
Int J Cancer. 2018; 142(3):584-596 [PubMed] Related Publications
The protein bcl-xL is able to enhance the secretion of the proinflammatory chemokine interleukin 8 (CXCL8) in human melanoma lines. In this study, we investigate whether the bcl-xL/CXCL8 axis is important for promoting melanoma angiogenesis and aggressiveness in vivo, using angiogenesis and xenotransplantation assays in zebrafish embryos. When injected into wild-type embryos, bcl-xL-overexpressing melanoma cells showed enhanced dissemination and angiogenic activity compared with control cells. Human CXCL8 protein elicited a strong proangiogenic activity in zebrafish embryos and zebrafish Cxcr2 receptor was identified as the mediator of CXCL8 proangiogenic activity using a morpholino-mediated gene knockdown. However, human CXCL8 failed to induce neutrophil recruitment in contrast to its zebrafish homolog. Interestingly, the greater aggressiveness of bcl-xL-overexpressing melanoma cells was mediated by an autocrine effect of CXCL8 on its CXCR2 receptor, as confirmed by an shRNA approach. Finally, correlation studies of gene expression and survival analyses using microarray and RNA-seq public databases of human melanoma biopsies revealed that bcl-xL expression significantly correlated with the expression of CXCL8 and other markers of melanoma progression. More importantly, a high level of co-expression of bcl-xL and CXCL8 was associated with poor prognosis in melanoma patients. In conclusion, these data demonstrate the existence of an autocrine CXCL8/CXCR2 signaling pathway in the bcl-xL-induced melanoma aggressiveness, encouraging the development of novel therapeutic approaches for high bcl-xL-expressing melanoma.

Wang J, Liu Q, Yuan S, et al.
Genetic predisposition to lung cancer: comprehensive literature integration, meta-analysis, and multiple evidence assessment of candidate-gene association studies.
Sci Rep. 2017; 7(1):8371 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
More than 1000 candidate-gene association studies on genetic susceptibility to lung cancer have been published over the last two decades but with few consensuses for the likely culprits. We conducted a comprehensive review, meta-analysis and evidence strength evaluation of published candidate-gene association studies in lung cancer up to November 1, 2015. The epidemiological credibility of cumulative evidence was assessed using the Venice criteria. A total of 1018 publications with 2910 genetic variants in 754 different genes or chromosomal loci were eligible for inclusion. Main meta-analyses were performed on 246 variants in 138 different genes. Twenty-two variants from 21 genes (APEX1 rs1130409 and rs1760944, ATM rs664677, AXIN2 rs2240308, CHRNA3 rs6495309, CHRNA5 rs16969968, CLPTM1L rs402710, CXCR2 rs1126579, CYP1A1 rs4646903, CYP2E1 rs6413432, ERCC1 rs11615, ERCC2 rs13181, FGFR4 rs351855, HYKK rs931794, MIR146A rs2910164, MIR196A2 rs11614913, OGG1 rs1052133, PON1 rs662, REV3L rs462779, SOD2 rs4880, TERT rs2736098, and TP53 rs1042522) showed significant associations with lung cancer susceptibility with strong cumulative epidemiological evidence. No significant associations with lung cancer risk were found for other 150 variants in 98 genes; however, seven variants demonstrated strong cumulative evidence. Our findings provided the most updated summary of genetic risk effects on lung cancer and would help inform future research direction.

Shih CH, Chiang TB, Wang WJ
Synergistic suppression of a disintegrin acurhagin-C in combination with AZD4547 and reparixin on terminating development for human osteosarcoma MG-63 cell.
Biochem Biophys Res Commun. 2017; 492(3):513-519 [PubMed] Related Publications
Current therapies available for the treatment of human osteosarcoma, an aggressive bone tumor, are insufficient. To examine an alternative approach of integrin-based anti-osteosacoma strategy, acurhagin-C, a Glu-Cys-Asp (ECD)-disintegrin, was isolated and evaluated for its application in combination with two potent inhibitors of basic fibroblast growth factor (bFGF) and interleukin-8 (IL-8). The investigation of human osteosarcoma MG-63 cells pre-incubated with a FGF receptor-1 (FGFR-1) blocker AZD4547, a CXC-chemokine receptor-1/-2 (CXCR1/2) antagonist reparixin, and acurhagin-C via two given modes of separation and combination was executed. Detected by flow cytometry, integrins-α2/-α5/-αv/-β1, FGFR-1, CXCR1 and CXCR2 constitutively express on the resting membrane. However, bFGF/IL-8-activated MG-63 cells only statistically enhanced the surface exposure of integrins-α5/-β1, FGFR-1 and CXCR2. In activated MG-63 cells, acurhagin-C targeting integrin-α5 not only might potentiate the inhibitory effect of AZD4547 and reparixin on the surface expression of integrin-α5, FGFR-1 and CXCR2, but also acurhagin-C used alone remained effectively to diminish the surface exposure of those targeted receptors. Hence, a complicated crosstalk mechanism should be involved in the membrane interactions. Furthermore, co-administration of acurhagin-C with AZD4547 and reparixin also showed to have the synergistic suppression toward cell proliferation and the gene expression of matrix metalloproteinase-2. Also, the administration of three-in-one mode could nearly abrogate the cellular attachment onto collagen-IV- and fibronectin-coated wells, as well as penetration into Matrigel-barrier. These data supported an ECD-disintegrin acurhagin-C targeting integrin-α5 upon combined used with AZD4547 and reparixin may become a promising therapeutic approach for attenuating osteosarcoma development.

Lu B, Zhou Y, Su Z, et al.
Effect of CCL2 siRNA on proliferation and apoptosis in the U251 human glioma cell line.
Mol Med Rep. 2017; 16(3):3387-3394 [PubMed] Related Publications
Glioma is one of the most common types of tumor of the central nervous system. Increased expression of C‑C motif chemokine 2 (CCL2) has previously been observed in various types of cancer. The effect of CCL2 small interfering (si)RNA on the proliferation, angiogenesis and apoptosis of the glioma cell line U251 was investigated in the present study. Data on CCL2 expression in glioma and normal tissues were obtained from The Cancer Genome Atlas. A total of 30 patients with glioma were enrolled in the present study. Cell proliferation was measured using a Cell Counting kit‑8 assay, while cellular apoptosis and cell cycle distribution were examined using flow cytometric analysis. The reverse transcription‑quantitative polymerase chain reaction and western blot analysis were used to measure the expression levels of biological pathway‑associated proteins caspase‑3, caspase‑7, tumor necrosis factor receptor superfamily member 10C (TNFRSF10C), growth regulated α protein (CXCL1), C‑X‑C motif chemokine 2 (CXCL2), C‑X‑C chemokine receptor type 2 (CXCR2), vascular endothelial growth factor (VEGF)A, VEGFB and VEGF. In addition, the mechanism of cellular apoptosis was analyzed by examining the phosphorylation of extracellular signal‑related kinase (ERK)1/2 and p38 mitogen‑activated protein kinase (p38) in cells treated with the C‑C chemokine receptor type 2 inhibitor RS‑102895. CCL2 was observed to be expressed in the glioma cell line U251 and was inhibited by CCL2 siRNA. Cells transfected with CCL2 siRNA exhibited inhibited cell proliferation, cell cycle arrest and increased cellular apoptosis. The expression levels of the apoptosis‑associated proteins caspase‑3, caspase‑7 and TNFRSF10C were observed to be downregulated, in addition to those of the angiogenesis‑associated proteins CXCL1, CXCL2, CXCR2, VEGFA, VEGFB and VEGF. The decrease in the rate of phosphorylation of ERK1/2 and p38 demonstrated the involvement of the mitogen‑activated protein kinase/ERK pathway in apoptosis. In conclusion, CCL2 siRNA exhibited effective inhibition of cell proliferation and angiogenesis in the glioma cell line U251, which may provide a theoretical basis for the use of CCL2 in in vivo research and clinical treatment as a novel anticancer agent.

Jia D, Li L, Andrew S, et al.
An autocrine inflammatory forward-feedback loop after chemotherapy withdrawal facilitates the repopulation of drug-resistant breast cancer cells.
Cell Death Dis. 2017; 8(7):e2932 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Stromal cells, infiltrating immune cells, paracrine factors and extracellular matrix have been extensively studied in cancers. However, autocrine factors produced by tumor cells and communications between autocrine factors and intracellular signaling pathways in the development of drug resistance, cancer stem-like cells (CSCs) and tumorigenesis have not been well investigated, and the precise mechanism and tangible approaches remain elusive. Here we reveal a new mechanism by which cytokines produced by breast cancer cells after chemotherapy withdrawal activate both Wnt/β-catenin and NF-κB pathways, which in turn further promote breast cancer cells to produce and secrete cytokines, forming an autocrine inflammatory forward-feedback loop to facilitate the enrichment of drug-resistant breast cancer cells and/or CSCs. Such an unexpected autocrine forward-feedback loop and CSC enrichment can be effectively blocked by inhibition of Wnt/β-catenin and NF-κB signaling. It can also be diminished by IL8-neutralizing antibody or blockade of IL8 receptors CXCR1/2 with reparixin. Administration of reparixin after chemotherapy withdrawal effectively attenuates tumor masses in a human xenograft model and abolishes paclitaxel-enriched CSCs in the secondary transplantation. These results are partially supported by the latest clinical data set. Breast cancer patients treated with chemotherapeutic drugs exhibited poor survival rate (66.7 vs 282.8 months, P=0.00071) and shorter disease-free survival time if their tumor samples expressed high level of IL8, CXCR1, CXCR2 genes and Wnt target genes. Taken together, this study provides new insights into the communication between autocrine niches and signaling pathways in the development of chemotherapy resistance and CSCs; it also offers a tangible approach in breast cancer treatment.

Kossmann CM, Annereau M, Thomas-Schoemann A, et al.
ADAM9 expression promotes an aggressive lung adenocarcinoma phenotype.
Tumour Biol. 2017; 39(7):1010428317716077 [PubMed] Related Publications
A disintegrin and metalloproteinase 9 (ADAM9) possesses potent metastasis-inducing capacities and is highly expressed in several cancer cells. Previous work has shown that ADAM9 participates in the adhesive-invasive phenotype in lung cancer cells in vitro. In this study, we evaluated whether ADAM9 expression plays a critical role in metastatic processes in vivo and in angiogenesis. We first found that high ADAM9 expression was correlated with poor lung adenocarcinoma patient prognosis on Prognoscan data base. In vivo model based on intravenous injection in nude mice showed that a stable downregulation of ADAM9 in A549 (TrA549 A9-) cells was associated with a lower number of nodules in the lung, suggesting lower potentials for extravasation and metastasis. On a subcutaneous xenograft we showed that TrA549 A9- produced significantly smaller tumours and exhibited fewer neovessels. In addition, in vitro human umbilical vein endothelial cells exposed to supernatant from TrA549 A9- could reduce the formation of more vessel-like structures. To further understand the mechanism, a human antibody array analysis confirmed that five cytokines were downregulated in TrA549 A9- cells. Interleukin 8 was the most significantly downregulated, and its interaction with CXCR2 was implicated in angiogenesis on an in vitro model. These results emphasize the critical influence of ADAM9 on lung cancer progression and aggressiveness. ADAM9 should at least be a marker of cancer aggressiveness and a potential therapeutic target for cancer treatment.

Franz JM, Portela P, Salim PH, et al.
CXCR2 +1208 CT genotype may predict earlier clinical stage at diagnosis in patients with prostate cancer.
Cytokine. 2017; 97:193-200 [PubMed] Related Publications
Interleukin-8 (IL-8) is an angiogenic CXC chemokine that plays an important role in both the development and progression of several human malignancies including prostate cancer (PC). A single nucleotide polymorphism (SNP) at -251 upstream of the transcriptional start site of the IL-8 gene has been shown to influence its production. The effects of IL-8 are mediated by two highly related chemokine receptors, CXCR1 and CXCR2. The present study investigated the influence of the IL-8 and CXCR2 gene variation on susceptibility and clinicopathological characteristics of PC in a group of Brazilian subjects.
METHODS: Two hundred and one patients and 185 healthy controls were enrolled in a case-control study. Blood was collected for DNA extraction; typing of IL-8 -251 T/A and CXCR2 +1208 C/T genes was performed by polymerase chain reaction with sequence-specific primers (PCR-SSP), followed by agarose gel electrophoresis. Risk association between the genotypes, PC susceptibility and tumor characteristics was estimated by odds ratio (OR) and 95% confidence intervals (95% CI) using logistic regression analysis, after adjusting for age at diagnosis.
RESULTS: A significant association was found between the heterozygous CXCR2 +1208 CT genotype and stage of PC. The CXCR2 +1208 CT genotype was significantly less frequent in patients with clinical stage T3-T4 compared to T1-T2 (56.7 versus 80.5%). Our findings suggest that carriers of the CXCR2 +1208 CT genotype had a protective effect for advanced PC (CT versus CC: adjusted OR=0.25; P=0.02). No association was observed between the SNP for IL-8 -251 T/A and clinicopathological parameters of PC.
CONCLUSION: These results indicated that the CXCR2 +1208 CT genotype is less frequent in advanced stages of PC, suggesting that this chemokine receptor plays a role in the pathogenesis of this disease.

Ha H, Debnath B, Neamati N
Role of the CXCL8-CXCR1/2 Axis in Cancer and Inflammatory Diseases.
Theranostics. 2017; 7(6):1543-1588 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
The chemokine receptors CXCR1/2 and their ligand CXCL8 are essential for the activation and trafficking of inflammatory mediators as well as tumor progression and metastasis. The CXCL8-CXCR1/2 signaling axis is involved in the pathogenesis of several diseases including chronic obstructive pulmonary diseases (COPD), asthma, cystic fibrosis and cancer. Interaction between CXCL8 secreted by select cancer cells and CXCR1/2 in the tumor microenvironment is critical for cancer progression and metastasis. The CXCL8-CXCR1/2 axis may play an important role in tumor progression and metastasis by regulating cancer stem cell (CSC) proliferation and self-renewal. During the past two decades, several small-molecule CXCR1/2 inhibitors, CXCL8 releasing inhibitors, and neutralizing antibodies against CXCL8 and CXCR1/2 have been reported. As single agents, such inhibitors are expected to be efficacious in various inflammatory diseases. Several preclinical studies suggest that combination of CXCR1/2 inhibitors along with other targeted therapies, chemotherapies, and immunotherapy may be effective in treating select cancers. Currently, several of these inhibitors are in advanced clinical trials for COPD, asthma, and metastatic breast cancer. In this review, we provide a comprehensive analysis of the role of the CXCL8-CXCR1/2 axis and select genes co-expressed in this pathway in disease progression. We also discuss the latest progress in developing small-molecule drugs targeting this pathway.

Xiang Z, Zhou ZJ, Xia GK, et al.
A positive crosstalk between CXCR4 and CXCR2 promotes gastric cancer metastasis.
Oncogene. 2017; 36(36):5122-5133 [PubMed] Related Publications
The molecular mechanism underlying gastric cancer (GC) invasion and metastasis is still poorly understood. In this study, we tried to investigate the roles of CXCR4 and CXCR2 signalings in gastric cancer metastasis. A highly invasive gastric cancer cell model was established. Chemokines receptors were profiled to search for the accountable ones. Then the underlying molecular mechanism was investigated using both in vitro and in vivo techniques, and the clinical relevance of CXCR4 and CXCR2 expression was studied in gastric cancer samples. CXCR4 and CXCR2 were highly expressed in a high invasive gastric cancer cell model and in gastric cancer tissues. Overexpression of CXCR4 and CXCR2 was associated with more advanced tumor stage and poorer survival for GC patients. CXCR4 and CXCR2 expression strongly correlated with each other in the way that CXCR2 expression changed accordingly with the activity of CXCR4 signaling and CXCR4 expression also changed in agreement with CXCR2 activity. Further studies demonstrated CXCR4 and CXCR2 can both activated NF-κB and STAT3 signaling, while NF-κBp65 can then transcriptionally activate CXCR4 and STAT3 can activate CXCR2 expression. This crosstalk between CXCR4 and CXCR2 contributed to EMT, migration and invasion of gastric cancer. Finally, Co-inhibition of CXCR4 and CXCR2 is more effective in reducing gastric cancer metastasis. Our results demonstrated that CXCR4 and CXCR2 cross-activate each other to promote the metastasis of gastric cancer.

Zhao J, Ou B, Feng H, et al.
Overexpression of CXCR2 predicts poor prognosis in patients with colorectal cancer.
Oncotarget. 2017; 8(17):28442-28454 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Colorectal cancer is a heterogeneous disease. Although many risk factors are used to predict colorectal cancer patients' prognosis after surgical resection, new prognostic factors are still needed to be defined to promote predictive efficacy of prognosis and further guide therapies. Herein, we identified the prognostic significance of CXCR2 in colorectal cancer patients. We retrospectively analysed 134 patients with colorectal cancer who underwent minimally invasive surgery between 2010 and 2011. The overall cohort was divided into a training set (n = 78) and a validation set (n = 56). We detected CXCR2 expression using immunohistochemical staining and defined the cut-off value using X-tile program. Next, we analysed the association between CXCR2 expression and clinicopathologic features in training and validation sets. High expression of CXCR2 was associated with Dukes stage (P = 0.018), tumor invasion (P = 0.018) and liver metastasis (P = 0.047). Multivariate COX regression analyses confirmed that high CXCR2 level was an independent prognostic risk factor for both overall survival and disease free survival. Kaplan-Meier survival analysis demonstrated that patients with high expression of CXCR2 had a poor overall survival and disease free survival even in low-risk group (I + II). This indicated that CXCR2 can help to refine individual risk stratification. In addition, we established Nomograms of all significant factors to predict 3- or 5-years overall survival and disease free survival. Moreover, we found the combination of CXCR2 and its ligand CXCL5 had more significant value in predicting the prognosis than single CXCR2 factor.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CXCR2, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999